Skip to main content

Two Approaches for the Reversal of Phenobarbital-Induced Behavioral Birth Defects

  • Conference paper
Neuronal Grafting and Alzheimer’s Disease

Summary

The present chapter presents a model for the reversal of behavioral birth defects. Since the neuroteratogen employed, phenobarbital, alters numerous processes and behaviors, the study focused on alterations in the hippocampus and its related behaviors. Mice were exposed to phenobarbital prenatally, although some of the experiments also included neonatally exposed groups. At adulthood they showed deficits in spontaneous alternation, Morris maze and eight-arm maze tests. Studies on hippocampal morphology revealed areal and cell losses and deficient dendritic architecture in the surviving neurons, including reductions from control in the number of dendritic branches, area, and spine density, but wider fission angle than control. Neurochemical studies on the hippocampus revealed the following alterations:

  1. 1.

    decrease in norepinephrine (NE) level and the number of NE cell bodies,

  2. 2.

    no change in the serotonergic system,

  3. 3.

    an increase in muscarinic receptors B max in the hippocampus,

  4. 4.

    transient decrease in gamma-aminobutyric acid (GABA) uptake, and an increase in the B max of GABA and benzodiazepine receptors.

The changes in GABA did not correspond with the sensitive periods for the behavioral deficits. Transplantation of cholinergic neurons into the hippocampus of the treated mice reversed most of the deficits in eight-arm maze behavior, while transplantation of noradrenergic cells did not have an effect. Consistently, destruction of the inhibiting dopaminergic innervations in the septum increased hippocampal choline acetyltransferase (ChAT) activity and enabled the treated mice to reach normal performance in the maze after training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aadland J, Beatty WW, Maki RH (1985) Spatial memory of children and adults assessed in the radial maze. Dev Psychobiol 18:163–172

    Article  PubMed  CAS  Google Scholar 

  • Backlund EO, Granberg PO, Hamberger B, Knutsson E, Martensson A, Sedvall G, Seiger A, Olson L (1985) Transplantation of adrenal medullary tissue to striatum in Parkinsonism -first clinical trials. J Neurosurg 62:169–173

    Article  PubMed  CAS  Google Scholar 

  • Beatty WW, Rush JR (1983) Spatial working memory in rats: Effects of monoaminergic antagonists. Pharmacol Biochem Behav 18:7–12

    Article  PubMed  CAS  Google Scholar 

  • Björklund A, Gage FH (1986) Transplantation of basal forebrain cholinergic neurons in the aged rat brain. Prog Brain Res 70:499–512

    Article  PubMed  Google Scholar 

  • Costa E, Panula P, Thompson HK, Chaney DL (1983) The transynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sei 32:165–179

    Article  CAS  Google Scholar 

  • Fishman RHB, Yanai J (1983) Long-lasting effects of early barbiturates on central nervous system and behavior. Neurosci Biobehav Rev 7:19–28

    Article  PubMed  CAS  Google Scholar 

  • Flicker C, Geyer MA (1982) Behavior during hippocampal microinfusions. I. Norepinephrine and diversive exploration. Brain Res Rev 4:79–103

    Article  CAS  Google Scholar 

  • Galey D, Durkin T, Sifakis G, Jeffard R (1984) Amelioration de conduites spatiales spontanees et acquises apres lesion des afferences dopaminergiques septales chez la souris: relations possibles avec l’activite cholinergique hippocampique. CR Acad Sei Paris 299:681–686

    CAS  Google Scholar 

  • Garrett KM, Tabakoff B (1986) Effect of prenatal phenobarbital on benzodiazepine receptor development. J Neurochem 47:1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Geffard M, McRae-Degueurce A, Sowan ML (1985) Immunocytochemical detection of acetylcholine in the rodent brain. Science 229:477–479

    Article  Google Scholar 

  • Goldwitz D, Koch J (1986) Performance of normal and neurological mutant mice on radial arm maze and active avoidance tasks. Behav Neurol Biol 46:216–226

    Article  Google Scholar 

  • Graeff FG, Auinters S, Gray JA (1980) Median raphe stimulation hippocampus theta rhythm and theta induced behavioral inhibiton. Physiol Behav 25:253–261

    Article  PubMed  CAS  Google Scholar 

  • Grecksch G, Matthies SH (1981) Differential effects of intrahippocampally or systemically applied picrotoxin on memory consolidation in rats. Pharmaco Biochem Behav 14:613–616

    Article  CAS  Google Scholar 

  • Kleinberger N, Yanai J (1985) Early phenobarbital induced alterations in hippocampal acetylcholinesterase activity and behavior. Dev Brain Res 22:113–123

    Article  CAS  Google Scholar 

  • Kolb B, Sutherland RJ, Whishaw IQ (1983) A comparison of the spatial localization in rats. Behav Neurosci 9:13–27

    Article  Google Scholar 

  • Low WC, Lewis PR, Bunch ST, Dunnett SB, Thomas R, Iversen SD, Björklund A, Stenevi U (1982) Function recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions. Nature 300:260–262

    Article  PubMed  CAS  Google Scholar 

  • Mellgren SI, Srebro B (1973) Changes in acetylcholinesterase and distribution of degeneration fibres in the hippocampus region after septal lesions in the rat. Brain Res 52:19–36

    Article  PubMed  CAS  Google Scholar 

  • Middaugh LD, Thomas TN, Simpson LW, Zemp JW (1981a) Effect of prenatal maternal injections of phenobarbital on brain neurotransmitters and behavior of young C57 mice. Neurobehav Toxicol Teratol 3:271–275

    PubMed  CAS  Google Scholar 

  • Middaugh LD, Simpson LW, Thomas TN, Zemp JW (1981b) Prenatal maternal phenobarbital increases reactivity and retards habituation of mature offspring to environmental stimuli. Psychopharmacology 74:349–352

    Article  PubMed  CAS  Google Scholar 

  • Misulis MK, Clinton ME, Dettbern WD, Gupta RC (1987) Differences in central and peripheral neural actions between soman and diisopropyl flurophosphate, organophosphorus inhibitors of acetylcholinesterase. Toxicol Appl Pharmacol 89:391–398

    Article  PubMed  CAS  Google Scholar 

  • Möhler H, Okada T, Emma SJ (1978) Benzodiazepine and neurotransmitter receptor binding in the rat brain after chronic administration of diazepam or phenobarbital. Brain Res 156:391–396

    Article  PubMed  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–125

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Development of water maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Nilsson OG, Shapiro ML, Gage FH, Olton DS, Björklund A (1987) Spatial learning and memory following fimbria-fornix lesion and grafting of fetal septal neurons to the hippocampus. Exp Brain Res 67:195–215

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    Article  PubMed  Google Scholar 

  • Olsen RW (1982) Drug interactions at the GABA receptor-ionophore complex. Annu Rev Pharmacol Toxicol 22:245–277

    Article  PubMed  CAS  Google Scholar 

  • Olton DS (1979) The function of septohippocampal connections in spatially organized behavior. Ciba Found Symp 58:327–349

    Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol [Animal Behav] 2:97–116

    Article  Google Scholar 

  • Olton DS, Walker JA, Gage FH (1978) Hippocampus connections and spatial discrimination. Brain Res 139:296–308

    Article  Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647

    Article  PubMed  CAS  Google Scholar 

  • Pick CG, Yanai J (1984) Long-term reduction in spontaneous alterations after early exposure to phenobarbital. Int J Dev Neurosci 2:223–228

    Article  CAS  Google Scholar 

  • Pick CG, Yanai J (1985) Long-term reduction in eight arm maze performance after early exposure to phenobarbital. Int J Dev Neurosci 3:223–227

    Article  CAS  Google Scholar 

  • Ranch JB (1983) Studies on single neurons in dorsal hippocampal formation and septum in unrestained rats. Exp Neurol 41:461–555

    Google Scholar 

  • Reinisch JM, Sanders SA (1982) Early barbiturate exposure: The brain, sexually dimorphic behavior and learning. Neurosci Biobehav Rev 6:311–319

    Article  PubMed  CAS  Google Scholar 

  • Roberts WW, Dember WN, Brodwick M (1962) Alternation and exploration in rats with hippocampal lesions. J Comp Physiol Psychol 55:695–700

    Article  PubMed  CAS  Google Scholar 

  • Robinson S, Malthe-Sorenssen D, Wood P, Commissiong J (1979) Dopaminergic control of the septal-hippocampal cholinergic pathway. J Pharmacol Exp Ther 208:476–485

    PubMed  CAS  Google Scholar 

  • Sonawane BR, Yaffe SJ, Shapiro BH (1980) Changes in mouse brain diazepam receptor binding after phenobarbital administration. Life Sei 27:1335–1338

    Article  CAS  Google Scholar 

  • Storm-Mathisen J (1977) Localization of transmitter candidates in the brain: The hippocampal formation as a model. Prog Neurobiol 8:119–181

    Article  PubMed  CAS  Google Scholar 

  • Study RE, Barker JL (1981) Diazepam and (-) pentobarbital: fluctuational analysis reveals different mechanisms for potentiation of aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sei USA 78:7180–7184

    Article  CAS  Google Scholar 

  • Walsh TJ, Tilson HA, Dehaven DL, Mailman RB, Fisher A, Hanin I (1984) AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat. Brain Res 321:91–102

    Article  PubMed  CAS  Google Scholar 

  • Werner R, Wong D (1987) Correction of genetic diabetes insipidus by adult hypothalamic grafts. Transplantation 43:485–488

    Article  PubMed  Google Scholar 

  • Yanai J, Bergman A (1981) Neuronal deficits after neonatal exposure to phenobarbital. Exp Neurol 73:199–208

    Article  PubMed  CAS  Google Scholar 

  • Yanai J, Pick CG (1987) Studies on noradrenergic alternations in relation to early phenobarbital-induced behavioral changes. Int J Dev Neurosci 5:337–344

    Article  PubMed  CAS  Google Scholar 

  • Yanai J, Pick CG (1989) Neuron transplantation reverses phenobarbital-induced behavioral birth defects in mice. Int J Dev Neurosci (in press)

    Google Scholar 

  • Yanai J, Rosselli-Austin L, Tabakoff B (1979) Neuronal deficits in mice following prenatal exposure to phenobarbital. Exp Neurol 64:237–244

    Article  PubMed  CAS  Google Scholar 

  • Yanai J, Wolf M, Feigenbaum JJ (1982) Autoradiographic study of phenobarbital’s effect on development of the central nervous system. Exp Neurol 78:437–449

    Article  PubMed  CAS  Google Scholar 

  • Yanai J, Sze PY, Iser C, Melamed E (1985) Studies on brain monoamine neurotransmitters in mice after prenatal exposure to barbiturate. Pharmacol Biochem Behav 23:215–219

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yanai, J. et al. (1989). Two Approaches for the Reversal of Phenobarbital-Induced Behavioral Birth Defects. In: Gage, F.H., Privat, A., Christen, Y. (eds) Neuronal Grafting and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48369-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48369-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48371-4

  • Online ISBN: 978-3-642-48369-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics