The Influence of M. H. Stone on the Origins of Category Theory

  • Saunders MacLane


This talk is a small piece of historical investigation, intended to be an example of history in the retrospective sense: Starting with some currently active ideas in category theory, it will examine their origins in particular in certain work of Marshall Stone. Hence this talk will not even mention many of Stone’s contributions (his theorem on one-parameter unitary groups, the Stone-Weierstrass theorem, or his results on spectra, on integration, or on convexity); instead we will examine the connection of just a few of his ideas with the subsequent development of category theory.


Adjoint Operator Category Theory General Topology Natural Isomorphism Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandroff, P., u. H. Hopf: Topologie I. Berlin: Springer 1935.Google Scholar
  2. 2.
    Banach, S.: Théorie des opérations linéaires. Warsaw 1932.Google Scholar
  3. 3.
    Bourbaki, N.: Eléménts de mathématique. Première partie, Les structures fondamentales de l’analyse, Livre I, Théoriè des ensembles (fascicule de résultats). Act. Sci. et Ind., No. 846. Paris: Hermann 1939.Google Scholar
  4. 4.
    Čech, E.: On bicompact spaces. Ann. of. Math. 38, 823–846 (1937).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eilenberg, S., and S. MacLane: Natural isomorphisms in group theory. Proc. Nat. Acad. Sci. U.S. 28, 537–543 (1942).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Eilenberg, S., and S. MacLane: General theory of natural equivalences. Trans. AMS 58, 231–294 (1945).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Freyd, P.: Abelian categories, an introduction to the theory of functors. New York: Harper & Row 1964.zbMATHGoogle Scholar
  8. 8.
    Kan, D. M.: Adjoint functors. Trans. AMS 87, 294–329 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lawvere, F. W.: An elementary theory of the category of sets. Proc. Nat. Acad. Sci. U.S.A. 52, 1506–1511 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    MacLane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Samuel, P.: On universal mappings and free topological groups. Bull. Am. Math. Soc. 54, 591–598 (1948).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Stone, M. H.: Linear transformations in Hilbert space. I. Geometrical aspects. Proc. Nat. Acad. Sci. U.S.A 15, 198–202 (1929).CrossRefGoogle Scholar
  13. 13.
    Stone, M. H.: Linear transformations in Hilbert space and their applications to analysis. Am. Math. Soc. Coll. Publ., vol. XV. New York 1932.Google Scholar
  14. 14.
    Stone, M. H.: The theory of representations for Boolean algebras. Trans. AMS 40, 37–111 (1936).Google Scholar
  15. 15.
    Stone, M. H.: Applications of the theory of Boolean rings to general topology. Trans. AMS 41, 321–364 (1937).CrossRefGoogle Scholar
  16. 16.
    Stone, M. H.: The representation of Boolean algebras. Bull. A.M.S. 44, 807–816 (1938).CrossRefGoogle Scholar
  17. 17.
    Stone, M. H.: A general theory of spectra. I. Proc. Nat. Acad. Sci. U.S 26, 280–283 (1940).CrossRefGoogle Scholar
  18. 18.
    Waerden, B. L. van der: Moderne Algebra. Berlin: Springer, vol.1 (1930), vol. 2 (1931).Google Scholar
  19. 19.
    von Neumann, J.: Über adjungierte Funktionaloperatoren. Ann. Math. 33, 249–310 (1932).CrossRefGoogle Scholar
  20. 20.
    Weil, A.: Sur les espaces á structure uniforme et sur la topologie générale. Act. Sci. et Ind., No. 551. Paris 1938.zbMATHGoogle Scholar
  21. 21.
    Weyl, H.: Gruppentheorie und Quantenmechanik. Leipzig 1928.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • Saunders MacLane
    • 1
  1. 1.The University of ChicagoUSA

Personalised recommendations