Advertisement

Auswertung randomisierter und nicht-randomisierter Patienten in klinischen Studien

  • M. Olschewski
  • M. Schumacher
  • K. Davis
Conference paper
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 71)

Zusammenfassung

Kontrollierte klinische Studien sind die allgemein anerkannte wissenschaftliche Methode zum Wirksamkeitsnachweis von Therapien. In einer korrekt geplanten und durchgeführten Studie kann man aufgrund der zufälligen Zuteilung der Behandlungen davon ausgehen, daß der Therapievergleich in der betrachteten Studienpopulation als valide anzusehen ist, was wir als interne Validität bezeichnen. Die Konsequenzen, die eine Studie für die medizinische Praxis erhält, hängen jedoch stark von ihrer Verallgemeinerungsfähigkeit ab, was wir als externe Validität bezeichnen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Altman D. G. (1985): Comparability of randomized groups. The Statistician 34, 125–136.CrossRefGoogle Scholar
  2. Byar, D. P. and Corle, D. K. (1977): Selecting optimal treatment in clinical trials using covariate information. J Chron Dis 30, 445–459.CrossRefGoogle Scholar
  3. CASS Principal Investigators and their Associates (1984): Coronary Artery Surgery Study (CASS): a randomized trial of coronary artery bypass surgery. Comparability of entry characteristics and survival in randomized and nonrandomized patients meeting randomization criteria. J Am Coll Cardiol 3, 114–128.CrossRefGoogle Scholar
  4. Principal Investigators of CASS and their Associates (1981): National Heart, Lung, and Blood Institute Coronary Artery Surgery Study. Circulation 63 (suppl I), 1–82.Google Scholar
  5. Cox, D. R. (1972): Regression models and life tables (with discussion). J R Stat Soc B 34, 187–220.zbMATHGoogle Scholar
  6. Cox D. R. and Oakes D. (1984): Analysis of survival data. Chapman and Hall, London.Google Scholar
  7. Gail, M. et al. (1988): Tests for no treatment effect in randomized clinical trials. Biometrika 75, 57–64.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Green, S. B. (1982): Patient heterogeneity and the need for randomized clinical trials. Contr Clin Trials 3, 189–198.CrossRefGoogle Scholar
  9. Kalbfleisch J. D. and Prentice R. L. (1980): The analysis of failure time data. Wiley and Sons., New York.zbMATHGoogle Scholar
  10. Kay R. (1984): Goodness-of-fit methods for the proportional hazards regression model: A review. Rev Epidem Sante Publ 32, 185–198.Google Scholar
  11. Machin, D. (1979): On the possibility of incorporating patients from non-randomising centres into a randomised clinical trial. J Chron Dis 32, 347–353.CrossRefGoogle Scholar
  12. Mau, J. (1988): A statistical assessment of clinical equivalence. Stat. Med. 7, 1267–1277.CrossRefGoogle Scholar
  13. Olschewski, M. and Scheurlen, H. (1985): Comprehensive Cohort Study: an alternative to randomized consent design in a breast preservation trial. Meth Inf Med 24, 131–134.Google Scholar
  14. Peto, R. et al. (1976,1977): Design and analysis of clinical trials requiring prolonged observation of each patient (Part I and II). Br J Cancer 34, 585–612 and 35, 1–39.CrossRefGoogle Scholar
  15. Peto, R. (1978): Clinical trial methodology. Biomedicine 28, 24–36.Google Scholar
  16. Riicker, G. (1988): A two-stage trial design for testing treatment, self-selection and treatment preference effects. Stat Med 8, 477–485.CrossRefGoogle Scholar
  17. Scheurlen, H., Olschewski, M. and Leibbrand, D. (1984): Zur Methodologie kontrollierter klinischer Studien iiber die Primarbehandlung des operablen Mammakarzinoms. Strahlentherapie 160, 459–468.Google Scholar
  18. Schoenfeld D. (1981): The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika 68, 316–318.MathSciNetCrossRefGoogle Scholar
  19. Schoenfeld D. (1983): Sample size formula for the proportional hazards regression model. Biometrics 39, 499–503.CrossRefzbMATHGoogle Scholar
  20. Schumacher M., Olschewski M. and Schmoor C. (1987): The impact of heterogeneity on the comparison of survival times. Stat Med 6, 773–784.CrossRefGoogle Scholar
  21. Senn S. J. (1989): Covariate imbalance and random allocation in clinical trials. Stat Med 8, 467–475.CrossRefGoogle Scholar
  22. Simon, R. (1976): in Buyse, M. E. et al. (eds.). Cancer clinical trials — methods and practice. Oxford University Press, Oxford.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Olschewski
    • 1
  • M. Schumacher
    • 1
  • K. Davis
    • 2
  1. 1.Institut für Medizinische Biometrie und Medizinische InformatikUniversität FreiburgFreiburgDeutschland
  2. 2.CASS Coordinating CenterUniversity of WashingtonSeattleUSA

Personalised recommendations