Skip to main content

Zusammenfassung

Einzelne transkraniell applizierte elektrische oder magnetische Kortexreize rufen einfache Muskelzuckungen hervor, nie jedoch komplexere Bewegungsabläufe. Im Bereich der oberen Extremität handelt es sich hierbei vorwiegend um Beugebewegungen der kontralateralen Finger, des Handgelenkes und des Ellenbogens. Das Überwiegen von Beugebewegungen nach Kortexstimulation ist wie der Bewegungseffekt nach Reizung des Plexus brachialis auf die stärkere Kraftentwicklung der Flexoren aufgrund günstigerer Hebelarme zurückzuführen, da elektromyographische Ableitungen der kortikal ausgelösten Muskelantworten eine simultane Aktivierung sowohl der Beuge-als auch der Streckmuskeln zeigen. Bei Vorkontraktion der Streckmuskeln können mit der transkraniellen Stimulation jedoch auch Extensionsbewegungen ausgelöst werden, die besonders im Bereich der Finger und des Handgelenks auftreten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ammon K, Gandevia SC (1990) Transcranial magnetic stimulation can influence the selection of motor programmes. J Neurol Neurosurg Psychiat 53: 705 - 707

    PubMed  CAS  Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ (1988) Focal magnetic coil activation of human motor cortex elicits a sense of movement in ischemically paralyzed, distal arm. J Physiol 403: 75 P

    Google Scholar 

  • Amassian VE, Maccabee PJ, Cracco RQ, Cracco JB (1990) Basic mechanisms of magnetic coil excitation of nervous system in humans and monkeys: application in focal stimulation of different cortical areas in humans. In: Chokroverty S (ed) Magnetic stimulation in clinical neurophysiology. Butterworth, Boston, pp 73 - 111

    Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ (1991) Does magnetic stimulation of human cerebellum elicit cerebral cortical responses? J Physiol 435: 54 P

    Google Scholar 

  • Amassian VE, Eberle L, Maccabee PJ, Cracco RQ (1992) Factors influencing magnetic coil excitation of isolated amphibian, cat, and primate nerves immersed in a human brain-shaped volume conductor. J Physiol 446: 23 P

    Google Scholar 

  • Barrett G, Shibasaki H, Neshige R (1985) A computer-assisted method for averaging movement related cortical potentials with respect to EMG-onset. Electroencephalogr Clin Neurophysiol 60: 276 - 281

    PubMed  CAS  Google Scholar 

  • Berardelli A, Inghilleri M (1991) Inhibitory effects produced by transcranial stimulation in man. International symposium on magnetic brain stimulation, Aachen Dezember 1991, Abstract

    Google Scholar 

  • Berardelli A, Inghilleri M, Cruccu G, Manfredi M (1990) Descending volley after electrical and magnetic transcranial stimulation in man. Neurosc Lett 112: 54 - 58

    CAS  Google Scholar 

  • Berardelli A, Inghilleri M, Rothwell JC, Cruccu G, Manfredi M (1991) Multiple firing of motoneurones is produced by cortical stimulation but not by direct activation of descending motor tracts. Electroencephalogr Clin Neurophysiol 81: 240 - 242

    PubMed  CAS  Google Scholar 

  • Benecke R, Meyer B-U, Schonle P, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71: 623 - 632

    PubMed  CAS  Google Scholar 

  • Benecke R, Meyer B-U, Freund H-J (1991) Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation. Exp Brain Res 83: 419 - 426

    PubMed  CAS  Google Scholar 

  • Bernard CG, Bohm E (1954) Cortical representation and functional significance of the cortico-motoneuronal system. Arch Neurol Psychiat 72: 473 - 502

    Google Scholar 

  • Boyd SG, Rothwell JC, Cowan JMA, Webb TJ, Morley T, Asselman P, Marsden CD (1986) A method of monitoring function in cortical pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiat 49: 251 - 257

    PubMed  CAS  Google Scholar 

  • Britton TC, Brown P, Day BL et al (1990) Can the cerebellum be stimulated through the intact scalp in man? J Physiol 420: 19 P

    Google Scholar 

  • Brower B, Asby P, Midroni G (1989) Excitability of corticospinal neurons during tonic muscle contraction in man. Exp Brain Res 74: 649 - 652

    Google Scholar 

  • Burke D, Adams RW, Skuse N (1989) The effects of voluntary contraction on the Hreflex of human limb muscles. Brain 112: 417 - 433

    PubMed  Google Scholar 

  • Burke D, Hicks RG, Stephen PH (1990) Corticospinal volleys evoked by anodal and cathodal stimulation to the human motor cortex. J Physiol 425: 283 - 299

    PubMed  CAS  Google Scholar 

  • Chiappa KH, Cros D, Day B, Fang J, Macdonell R, Mavroudakis N (1991) Magnetic stimulation of the human motor cortex: ipsilateral and contralateral facilitation effects. In: Levy WJ, Cracco RQ, Barker AT, Rothwell JC (eds) Magnetic motor stimulation: basic principles and clinical experience. Electroencephalogr Clin Neurophysiol [Suppl 43]: 186 - 201

    Google Scholar 

  • Claus D, Mills KR, Murray NMF (1988) The influence of vibration on the excitability of alpha motoneurons. Electroencephalogr Clin Neurophysiol 69: 431 - 436

    PubMed  CAS  Google Scholar 

  • Clough JFM, Kernell D, Phillips CG (1968) The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. J Physiol 198: 145 - 166

    PubMed  CAS  Google Scholar 

  • Cohen LG, Hallett M (1988) Non-invasive mapping of human motor cortex. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 67 - 71

    Google Scholar 

  • Cohen LG, Bandinelli S, Topka H, Fuhr P, Roth BJ, Hallett M (1991) Topographic maps of human motor cortex in normal and pathological conditions: mirror movements, amputations and spinal cord injuries. In: Levy WJ, Cracco RQ, Barker AT, Rothwell JC (eds) Magnetic motor stimulation: basic principles and clinical experience. Electroencephalogr Clin Neurophysiol [Suppl 43]: 36 - 50

    Google Scholar 

  • Cole JD, Philip HI, Sedgwick EM (1991) Magnetic brain stimulation produces a normal silent period in the EMG but does not lead to perception of an induced finger movement in a chronically deafferented man. J Physiol 435: 114 P

    Google Scholar 

  • Cowan JMA, Day BL, Marsden CD, Rothwell JC (1986) The effect of percutaneous motor stimulation on H-reflexes in the muscles of the arm and leg in man. J Physiol 377: 333 - 347

    PubMed  CAS  Google Scholar 

  • Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74: 417 - 427

    PubMed  CAS  Google Scholar 

  • Datta AK, Harrison LM, Stephens JA (1989) Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseus muscle. J Physiol 418: 13 - 23

    PubMed  CAS  Google Scholar 

  • Davey NJ, Ellaway PH, Maskill DW (1991) Facilitation by mechanical cutaneous stimulation of muscle responses to transcranial magnetic stimulation in man. J Physiol 438: 7 P

    Google Scholar 

  • Davey NJ, Romaignere P, Maskill DW, Ellaway PH (1992) Inhibition of voluntary contraction by transcranial magnetic stimulation of the brain subthreshold for excitation in man. J Physiol 446: 447 P

    Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Dick JPR, Cowan JMA, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man: 2. Multiple descending volleys. Brain 110: 1191-1209

    Google Scholar 

  • Day BL, Dressier D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989a) Electric and magnetic stimulation of the human motor cortex: surface EMG and single motor unit responses. J Physiol 412: 449 - 473

    PubMed  CAS  Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Maertens de Noordhout A, Nakashima K, Shannon K, Marsden CD (1989b) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Evidence for the storage of motor programs in the brain. Brain 112: 649-663

    Google Scholar 

  • Day BL, Riescher H, Struppler A, Rothwell JC, Marsden CD (1991) Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J Physiol 433: 41 - 57

    PubMed  CAS  Google Scholar 

  • Deuschl G, Michels R, Berardelli A, Schenk E, Inghilleri M, Lucking CH (1991) Effects of electric and magnetic transcranial stimulation on long latency reflexes. Exp Brain Res 83: 403 - 410

    PubMed  CAS  Google Scholar 

  • Edgley SA, Eyre JA, Lemon RN, Miller S (1992) Direct and indirect activation of corticospinal neurones by electrical and magnetic stimulation in the anaesthetized macaque monkey. J Physiol 446: 224 P

    Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Colebatch J, Day BL, Marsden CD (1990) Transcallosal effects on motor cortical excitability in man. J Physiol 429: 38 P

    Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81: 257 - 262

    PubMed  CAS  Google Scholar 

  • Lassek AM (1942) The human pyramidal tract. IV. A study of the mature, myelinated fibres of the pyramid. J Comp Neurol 76: 217 - 225

    Google Scholar 

  • Hennemann (1957) Relation between size of neurons and their susceptibility to discharge. Science 126: 1345 - 1347

    Google Scholar 

  • Hess CW, Mills KR (1986) Low-threshold motor units in human hand muscles can be selectively activated by magnetic brain stimulation. J Physiol 380: 62 P

    Google Scholar 

  • Hess CW, Mills KR, Murray NMF (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett 71: 235 - 240

    PubMed  CAS  Google Scholar 

  • Hess CW, Ludin HP (1988) Die transkranielle Kortexstimulation mit Magnetfeldpulsen: Methodische und physiologische Grundlagen. Z EEG EMG 19: 209-215

    Google Scholar 

  • Hess CW, Mills KR, Murray NMF (1987a) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol 388: 397 - 419

    PubMed  CAS  Google Scholar 

  • Hess CW, Mills KR, Murray NMF, Schriefer TN (1987b) Excitability of the human motor cortex is enhanced during REM sleep. Neurosci Lett 82: 47 - 52

    PubMed  CAS  Google Scholar 

  • Hess CW, Mills KR, Murray NMF, Schriefer TN (1987c) Magnetic stimulation of the human brain during natural sleep. J Physiol 388: 48 P

    Google Scholar 

  • Hess CW, Mills KR, Murray NMF, Schriefer TN (1988) Motor evoked potentials during slow wave sleep and REM sleep. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 85 - 92

    Google Scholar 

  • lies JF, Cummings R (1992) Electrical and magnetic stimulation of motor cortex in man. J Physiol 446: 223 P

    Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Priori A, Manfredi M (1989) Corticospinal potentials after transcranial stimulation in humans. J Neurol Neurosurg Psychiat 52: 970 - 974

    PubMed  CAS  Google Scholar 

  • Inghilleri M, Cruccu G, Berardelli A, Innocenti M, Manfredi M, Rothwell JC (1990) Inhibition of motor responses evoked by transcranial magnetic stimulation by peripheral nerve stimulation in man. J Physiol 426: 102 P

    Google Scholar 

  • Katayama Y, Tsubokawa T, Maejina S, Mirayama T, Yamamoto T (1988a) Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anaesthesia. J Neurol Neurosurg Psychiat 51: 50 - 59

    PubMed  CAS  Google Scholar 

  • Katayama Y, Tsubokawa T, Yamamoto T, Maejina S (1988b) Spinal cord potentials to direct stimulation of the exposed motor cortex in humans: comparison with data from transcranial motor cortex stimulation. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 305 - 311

    Google Scholar 

  • Kurjirai T, Rothwell JC, Day BL, Thompson PD, Marsden CD (1992) An investigation of cortical excitability during silent period induced by magnetic brain stimulation in man. Mov Dis 7 (Suppl 1): 153

    Google Scholar 

  • Maccabee PJ, Amassion VE, Eberle LP, Cracco RQ, Rudell AP (1992) The magnetic coil activates amphibian and primate nerve in vitro at two sites and selectively at a bend. J Physiol 446: 228 P

    Google Scholar 

  • Maertens de Noordhout A, Rothwell JC, Day BL, Dressler D, Nakashima K, Thompson PD, Marsden CD (1992) Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J Physiol 447: 535 - 548

    Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1981) Maximal twitches from stimulation of the motor cortex in man. J Physiol 312: 5 P

    Google Scholar 

  • Meyer B-U, Britton TC, Kloten H, Steinmetz H, Benecke R (1991) Coil placement in magnetic brain stimulation related to skull and brain anatomy. Electroencephalogr Clin Neurophysiol 81: 38 - 46

    PubMed  CAS  Google Scholar 

  • Meyer B-U, Röricht S, Benecke R (1992a) Differences of single motor unit (SMU) responses in hand and leg muscles following transcranial magnetic brain stimulation (TMS). IX International congress of electromyography and clinical neurophysiology, Jerusalem, Israel, Juni 1992

    Google Scholar 

  • Meyer B-U, Bischoff C, Meister H, Conrad B (1992b) Towards a standardized use of transcranial magnetic brain stimulation: effects of tonic muscle contraction and stimulation strength. IX International congress of electromyography and clinical neurophysiology, Jerusalem, Israel, Juni 1992

    Google Scholar 

  • Patton HD, Amassian VE (1954) Single- and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17: 345 - 363

    PubMed  CAS  Google Scholar 

  • Penfield W (1967) The excitable cortex in conscious man. Liverpool University Press, Liverpool

    Google Scholar 

  • Peterson BW, Pitts NG, Fukushima K (1979) Reticulospinal connexions with limb and axial motoneurones. Exp Brain Res 36: 1 - 20

    PubMed  CAS  Google Scholar 

  • Phillips CG, Porter RR (1977) Corticospinal neurones. Academic Press, London Rossini PM, Stalberg E, Winkler T, Zarola F (1988) Motor responses to transcranial brain stimulation: evaluation of premovement facilitation by surface, coaxial needle, and single fibre recordings. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 105 - 122

    Google Scholar 

  • Rothwell JC, Day BL, Berardelli A, Marsden CD (1984) Effects of motor cortex stimulation on spinal interneurones in intact man. Exp Brain Res 54: 382 - 384

    PubMed  CAS  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Dick JPR, Kachi T, Cowan JMA, Marsden CD (1987) Motor cortex stimulation in intact man: 1. general characteristics of EMG responses in different muscles. Brain 110: 1173 - 1190

    PubMed  Google Scholar 

  • Rothwell JC, Day BL, Thompson PD, Marsden CD (1989) Interruption of motor programmes by electrical or magnetic brain stimulation in man. In: Allum JHJ, Hulliger M (eds) Progress in brain research, vol 80. Elsevier, Amsterdam, pp 467 - 472

    Google Scholar 

  • Rothwell JC, Day BL, Amassian VE (1992) Near threshold electrical and magnetic transcranial stimuli activate overlapping sets of cortical neurones in humans. J Physiol 446: 61 P

    Google Scholar 

  • Rushton DN, Ridding MC (1992) Lower limb responses to magnetic stimulation over the cervical cord. J Physiol 446: 227 P

    Google Scholar 

  • Starr A, Caramia M, Zarola F, Rossini PM (1988) Enhancement of motor cortical excitability in humans by non-invasive electrical stimulation appears prior to voluntary movement. Electroencephalogr Clin Neurophysiol 70: 26 - 32

    PubMed  CAS  Google Scholar 

  • Thompson PD, Day BL, Rothwell JC, Dressler D, Maertens de Noordhout A, Marsden CD (1991) Further observations on the facilitation of muscle responses to cortical stimulation by voluntary contraction. Electroencephalogr Clin Neurophysiol 81: 397 - 102

    PubMed  CAS  Google Scholar 

  • Tomberg C, Caramia MD (1991) Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81: 319 - 322

    PubMed  CAS  Google Scholar 

  • Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD (1991) Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol 441: 57 - 72

    PubMed  CAS  Google Scholar 

  • Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41: 1795 - 1799

    PubMed  CAS  Google Scholar 

  • Werhahn KJ, Meyer B-U, Rothwell JC, Thompson PD, Day BL, Marsden CD (1992) Reduction of motor cortex excitability by transcranial magnetic stimulation over the human cerebellum. J Physiol (in press)

    Google Scholar 

  • Agnew WF, McCreery DB (1987) Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery 20: 143 - 147

    PubMed  CAS  Google Scholar 

  • Barker AT, Freeston IL, Jalinous R (1985) Magnetic stimulation of the human brain. J Physiol 369: 3 P

    Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropath Exp Neurol 46: 283-301

    PubMed  CAS  Google Scholar 

  • Conel JL (1967) The postnatal development of the human cerebral cortex. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Cracco JB, Cracco RQ, Stolove R (1979) Spinal evoked potential in man: A maturational study. Electroencephalogr Clin Neurophysiol 46: 58-64

    PubMed  CAS  Google Scholar 

  • Day BL, Dick JPR, Marsden CD, Thompson PD (1986) Differences between electrical and magnetic stimulation of the human brain. J Physiol 378: 36 P

    Google Scholar 

  • Eyre JA, Flecknell PA, Kenyon BR, Koh THHG, Miller S (1990a) Acute effects of electromagnetic stimulation of the brain on cortical activity, cortical blood flow, blood pressure and heart rate in the cat: an evaluation of safety. J Neurol Neurosurg Psychiat 53: 507 - 513

    PubMed  CAS  Google Scholar 

  • Eyre JA, Miller S, O'Sullivan MC, Ramesh V, Watts C (1990b) Constancy of conduction delays in central nervous somatosensory and motor pathways during growth and development in man. European J Neuroscience [Suppl 3]65: 1285

    Google Scholar 

  • P Eyre JA, Miller S, Ramesh V (1991) Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol 434: 441 - 452

    Google Scholar 

  • Gamstorp I (1963) Normal conduction velocity of ulnar, median and peroneal nerves in infancy, childhood and adolescence. Acta Paediatr Scand 146: 68 - 76

    Google Scholar 

  • Hess CW, Mills KR, Murray NMF (1986) Magnetic stimulation of the human brain: the effects of voluntary muscle activity. J Physiol 378: 37 P

    Google Scholar 

  • Homberg V, Müller K, Lenard HG (1989) Maturation of central conduction time in corticospinal tracts predicts development of fastest voluntary movements in children. Soc Neurosci Abstr 15: 69

    Google Scholar 

  • Koh THHG, Eyre JA (1988) Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch Dis Child 63: 1347 - 1352

    PubMed  CAS  Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW (1975) Cellular kinetics, myelination and patterns of growth of the nervous system. In: Lemire RJ, Loeser JD, Leech RW (eds) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown, pp 40 - 52

    Google Scholar 

  • Müller K, Homberg V, Lenard HG (1991a) Magnetoelectric Stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneural projections. Electro- encephalogr Clin Neurophysiol 81: 63-70

    Google Scholar 

  • Müller K, Homberg V, Lenard HG (1991b) Maturation of lower extremity EMG responses to postural perturbations. Relationship of response latencies to development of fastest central and peripheral efferents. Exp Brain Res 84: 444-452

    PubMed  Google Scholar 

  • Müller K, Homberg V, Coppenrath P, Lenard HG (1990) Maturation of set-modulation of lower extremity EMG responses to postural perturbations. Neuropediatrics 23: 82 - 91

    Google Scholar 

  • Radtke HW (1969) Motorische Nervenleitgeschwindigkeit bei normalen Säuglingen und Kindern. Helv Paediat Acta 4: 390 - 398

    Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Dick JPR, Kachi T, Cowan JMA, Marsden CD (1987) Motor cortex stimulation in intact man. I. General characteristics of EMG responses in different muscles. Brain 110: 1173-1190

    PubMed  Google Scholar 

  • Scammon Re (1933) Growth and development of the child. Part II, Anatomy and physiology. The central nervous system. In: White House Conference on Child Health and Protection, The Century, New York London, pp 176 - 190

    Google Scholar 

  • Thomas JE, Lambert EH (1960) Ulnar nerve conduction velocity and H-reflex in infants and children. J Appl Physiol 15: 1 - 9

    PubMed  CAS  Google Scholar 

  • Yakovlev PI, Roche Lecours A (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford Edinburgh, pp 3 - 70

    Google Scholar 

  • Zhu Y, Georgesco M, Cadilhac J (1987) Normal latency values of early cortical somatosensory evoked potentials in children. Electroencephalogr Clin Neurophysiol 68: 471 - 474

    PubMed  CAS  Google Scholar 

  • Amassian V E, Cracco J B, Cracco R Q, Eberle L, Maccabee PJ, Rudell A (1987) Suppression of human visual perception with the magnetic coil over occipital cortex. J Physiol 390: 24 P

    Google Scholar 

  • Amassian V E, Cracco J B, Cracco R Q, Eberle L, Maccabee P J, Rudell A (1988) Suppression of human visual perception with the magnetic coil over occipital cortex. J Physiol 398: 408 P

    Google Scholar 

  • Amassian V E, Cracco R Q, Maccabee P J, Cracco J B, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74: 458–462

    PubMed  CAS  Google Scholar 

  • Amassian V E, Maccabee P J, Cracco R Q, Cracco J B (1990) Basic mechanisms of magnetic coil excitation of nervous system in humans and monkeys: application in focal stimulation of different cortical areas in humans. In: Chokroverty S (ed) Magnetic stimulation in clinical neurophysiology. Butterworth, Boston, pp 99–101

    Google Scholar 

  • Aschoff J C (1974) Reconsideration of the oculomotor pathway. In: Schmitt W O, Worden F G (eds) Neurosciences. Third study program. MIT Press, Cambridge, pp 305–310

    Google Scholar 

  • Baker C L, Hess R F, Zihl J J (1991). Residual motion perception in a “motion-blind” patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11:454–461 Barlow HB, Kohn HL, Walsh EG (1947) Visual sensations aroused by magnetic fields. Am J Physiol 148: 372–375

    Google Scholar 

  • Beckers G (1990) Selektive Wirkung der transkraniellen Magnet-Stimulation auf die visuelle Wahrnehmung. Psychol. Diplomarbeit, Universität Düsseldorf

    Google Scholar 

  • Beckers G, Hömberg V (1990a) Motion blurring induced by transcranial magnetic stimulation to occipital cortex in man. Perception 19: 371 P

    Google Scholar 

  • Beckers G, Hömberg V (1990b) Transcranial magnetic brain stimulation of human occipital cortex. Eur J Neurosci [Suppl 4]: 308 P

    Google Scholar 

  • Beckers G, Hömberg V (1991a) Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex. Exp Brain Res 87: 421–432

    PubMed  CAS  Google Scholar 

  • Beckers G, Hömberg V (1991b) The influence of transcranial magnetic brain stimulation over human peristriate cortex on visual motion perception. Eur J Neurosci [Suppl 4]: 84 P

    Google Scholar 

  • Beer B (1902) Ueber das Auftreten einer objectiven Lichtempfindung im magnetischen Felde. Klin Wochenschr 15: 108–109

    Google Scholar 

  • Benecke R, Meyer B-U, Schönle P W, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71: 623–632

    PubMed  CAS  Google Scholar 

  • Breitmeyer B G (1984) Visual masking. Oxford University Press, New York

    Google Scholar 

  • Brindley G S (1982) Effects of electrical stimulation of the visual cortex. Human Neurobiol 1: 281–283

    CAS  Google Scholar 

  • Brindley G S, Lewin W S (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196: 479–493

    PubMed  CAS  Google Scholar 

  • Cowey A, Rolls E T (1974) Human cortical magnification factor and its relation to visual acuity. Exp Brain Res 21: 447–454

    PubMed  CAS  Google Scholar 

  • Cunningham V J, Deiber M-P, Frackowiak R S J et al. (1990) The motion area (area V5) of human visual cortex. J Physiol 423: 101 P

    Google Scholar 

  • d’Arsonval A (1896) Dispositifs pour la mesure des courants alternatifs de toutes frequences. Compt Rend Soc Biol 2: 450–451

    Google Scholar 

  • Day B L, Rothwell J C, Thompson P D, Maertens de Nordhout A, Nakashima K, Shannon K, Marsden C D (1989) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in the intact man. Evidence for the storage of motor programmes in the brain. Brain 112: 649–663

    Google Scholar 

  • Day B L, Dressler D, Hess C W et al. (1990) Erratum: Direction of current in magnetic stimulating coils used for percutaneous activation of brain, spinal cord and peripheral nerve. J Physiol 430: 617

    Google Scholar 

  • Dobelle W H, Mladejovsky M G, Evans I R, Roberts T S, Girvin I T (1976) Braille reading by a blind volunteer by visual cortex stimulation. Nature 259: 111–112

    PubMed  CAS  Google Scholar 

  • Dunlap R (1911) Visual sensations from the alternating magnetic field. Science 33: 68–71

    PubMed  CAS  Google Scholar 

  • Foerster O (1929) Beiträge zu Pathophysiologie der Sehbahn und der Sehsphäre. J Psychol Neurol (Leipzig) 39: 463–485

    Google Scholar 

  • Holmes G (1945) Ferrier Lecture: The organization of the visual cortex in man. Proc R Soc 132: 318–361

    Google Scholar 

  • Hurlbert A, Poggio T (1985) Spotlight on attention. TINS 7: 309–311

    Google Scholar 

  • Kölmel H W (1988) Die homonymen Hemianopsien. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Loeb G E (1991) Visual prostheses. Third IBRO World Congress of Neuroscience, Montreal (Canada) W2: 7 P

    Google Scholar 

  • Lueck C J, Zeki S, Friston K J et al. (1990) The colour centre in the cerebral cortex of man. Nature 340: 386–389

    Google Scholar 

  • Magnussen S, Mathiesen R (1989) Detection of moving and stationary gratings in the absence of striate cortex. Neuropsychologia 27: 725–728

    PubMed  CAS  Google Scholar 

  • Magnusson C E, Stevens H C (1911) Visual sensations caused by the changes in the strenght of a magnetic field. Am J Physiol 29: 124–136

    Google Scholar 

  • Magnusson C E, Stevens H C (1914) Visual sensations created by a magnetic field. Phil Mag 28: 188–207

    Google Scholar 

  • Merton P A, Morton H B (1980) Electrical stimulation of human motor and visual cortex through the scalp. J Physiol 305: 9–10 P

    Google Scholar 

  • Meyer B-U, Kloten H, Britton TC, Benecke R (1990a) Technical approaches to hemisphere-selective transcranial magnetic brain stimulation. Electromyogr Clin Neurophysiol 30: 311–318

    PubMed  CAS  Google Scholar 

  • Meyer B-U, Britton T C, Benecke R (1990b) Magnetic stimulation of the corticonuclear system and of proximal cranial nerves in humans. In: Berardelli A, Benecke R, Manfredi M, Marsden CD (eds) Motor disturbances II. Academic Press, London, pp 235–248

    Google Scholar 

  • Meyer B-U, Britton T C, Kloten H, Steinmetz H, Benecke R (1991a) Coil placement in magnetic brain stimulation related to skull and brain anatomy. Electroencephalogr Clin Neurophysiol 81: 38–46

    PubMed  CAS  Google Scholar 

  • Meyer B-U, Diehl R R, Steinmetz H, Britton T C, Benecke R (1991b) Magnetic stimuli applied over motor cortex and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. In: Levy W J, Cracco R Q, Barker A T, Rothwell J C (eds) Magnetic motor stimulation: basic principles and clinical experience. Electroencephalogr Clin Neurophysiol [Suppl 43]:121–134

    Google Scholar 

  • Meyer B-U, Diehl R R (1992) Untersuchung des visuellen Systems mit der transkraniellen Magnetstimulation. Nervenarzt 63: 328–334

    PubMed  CAS  Google Scholar 

  • Müri R M, Hess C W, Meienberg 0 (1991) Transcranial stimulation of the human frontal eye field by magnetic pulses. Exp Brain Res 86: 219–223

    Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443

    Google Scholar 

  • Penfield W, Perot P (1963) The brain’s record of auditory and visual experience. Brain 86: 596–696

    Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. A clinical study of localization of function. Macmillan, New York

    Google Scholar 

  • Priori A, Bertolasi L, Rothwell J C, Day B L, Marsden C D (1991a) Human saccadic reaction time is delayed by transcranial magnetic stimulation. J Physiol 435: 52 P

    Google Scholar 

  • Priori A, Bertolasi L, Rothwell J C, Day B L, Marsden C D (1991b) Evidence that trans-cranial magnetic stimulation delays saccadic eye movements by interfering with activity in occulomotor areas of cortex. J Physiol 438: 302 P

    Google Scholar 

  • Riddoch G (1917) Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40: 17–57

    Google Scholar 

  • Robinson D A, Fuchs A F (1967) Frontal lobe stimulation and saccadic eye movements. Proc Ann Eng Med Biol 9: 6 P

    Google Scholar 

  • Stensaas S S, Eddington D A, Dobelle W H (1974) The topography and variability of the primary visual cortex in man. Neurosurg 40: 747–755

    CAS  Google Scholar 

  • Sternberg S (1966) High speed scanning in human memory. Science 153: 652–654

    PubMed  CAS  Google Scholar 

  • Thompson S P (1910) A physical effect of an alternating magnetic field. Proc R Soc Lond (Biol) 82: 396–399

    Google Scholar 

  • Volkmann F C (1986) Human visual suppression. Vision Res 26: 1401–1416

    PubMed  CAS  Google Scholar 

  • Walsh P (1946) Magnetic stimulation of the human retina. Fed Proc 5: 109–110

    Google Scholar 

  • Wessel K, Kömpf D, Klostermann W, Moser A (1991) Lack of oculomotor response after transcranial magnetic stimulation. Neuroophthalmology 11: 199–208

    Google Scholar 

  • Zeki S (1990a) A century of achromatopsia. Brain 113: 1721–1777

    PubMed  Google Scholar 

  • Zeki S (1990b) The motion pathways of the visual cortex. In: Blakemore C (ed) Vision coding and efficency, Cambridge University Press, Cambridge, pp 321–345

    Google Scholar 

  • Zeki S (1991) Cerebral akinetopsia. Brain 114: 811–824

    PubMed  Google Scholar 

  • Zeki S, Watson J D G, Lueck C J, Friston K J, Kennard C, Frackowiak R S J (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11: 641–649

    PubMed  CAS  Google Scholar 

  • Zeki S M (1971) Cortical projections from two peristriate areas in the monkey. Brain Res 34: 19–35

    PubMed  CAS  Google Scholar 

  • Zeki S M (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236: 549–573

    PubMed  CAS  Google Scholar 

  • Zihl J, von Cramon D J, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106: 313–340

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, BU. (1992). Physiologische Grundlagen. In: Meyer, BU. (eds) Magnetstimulation des Nervensystems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-47601-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47601-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47603-7

  • Online ISBN: 978-3-642-47601-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics