Skip to main content

Photoisomerization of Stilbene and 1,4-Diphenylbutadiene in Compressed Gases and Liquids — Density-Dependent Solvent Shift and Transport Contributions

  • Conference paper
Time-Resolved Vibrational Spectroscopy

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 4))

Abstract

Reactions in the liquid phase are strongly influenced by reactant-solvent interactions, which one usually investigates by simply changing the solvent. This approach entails the simultaneous variation of a whole set of parameters that may affect the reaction, so that it appears desirable to employ methods, where only a single parameter is varied continuously over a wide range [1]. One such parameter is the bath gas or solvent pressure, which we have chosen to study the density dependence of halogen photolysis and atom recombination from the low-pressure gas right through the gas-liquid transition region into the dense liquid under several kilobars of pressure [2–6]. We wish to report here on similar experiments concerning the photoisomerization of trans-stilbene and 1,4-diphenylbutadiene (DPB), which have been studied in detail with picosecond time-resolution under collision-free conditions, in dense gases, and a variety of liquid solvents, see, e. g. refs. [7–16], and references therein. The gas phase reaction can be represented very well by RRKM-theory for both stilbene [17] and DPB [18]. If one calculates the limiting high-pressure rate-constant k from the specific rate-constants k(E) of the isolated molecule reaction, one obtains a value that is more than one order of magnitude below the rate coefficients measured in low viscosity liquid solvents for the case of stilbene, while for DBP it is only slightly above the experimental liquid phase value. Recently, we have suggested a simple model involving a density-dependent lowering of the isomerization barrier in the first excited singlet state, which could be used to describe the observed behaviour [19]. Another question arises as a result of the approximate m−0.5-dependence of the rate coefficient in high viscosity liquid solvents [15,16,20–22], which is not in accord with the predictions of Kramers theory [23]. A solvent -induced barrier shift could also serve as an explanation for this phenomenon [19], as an alternative to interpretations considering frequency-dependent friction coefficients or non-Markovian effects (see discussion in [19] and references therein). The aim of our experiments was to gain more insight into the way the solvent density and viscosity influence the photoisomerization rate by changing them continuously from the gas to the compressed liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Troe, in “High-Pressure Chemistry” (ed. H. Kelm; D. Reidel Publ., Dordrecht, Boston, and London, 1978), p. 489;

    Google Scholar 

  2. J. Troe, Ann. Rev. Phys. Chem. 29, 223 (1978)

    Article  ADS  Google Scholar 

  3. H. Hippler, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 77, 1104 (1973)

    Google Scholar 

  4. K. Luther and J. Troe, Chem. Phys. Lett. 24, 85 (1974)

    Article  ADS  Google Scholar 

  5. K. Luther, J. Schroeder, J. Troe, and U. Unterberg, J. Phys. Chem. 84, 3072 (1980)

    Article  Google Scholar 

  6. B. Ottö,J.Schroeder, and J. Troe, J. Chem. Phys. 81, 202 (1984)

    Article  ADS  Google Scholar 

  7. H. Hippler, V. Schubert, and J. Troe, J. Chem. Phys. 81, 3931 (1984)

    Article  ADS  Google Scholar 

  8. B.I. Greene, R.M. Hochstrasser, and R.B. Weisman, J. Chem. Phys. 71, 544 (1979);

    Article  ADS  Google Scholar 

  9. B.I. Greene, R.M. Hochstrasser, and R.B. Weisman, Chem. Phys. 48, 289 (1980)

    Article  Google Scholar 

  10. B.I. Greene and R.C. Farrow, J. Chem. Phys. 78, 3336 (1983)

    Article  ADS  Google Scholar 

  11. T.J. Majors, U. Even, and J. Jortner, J. Chem. Phys. 81, 2330 (1984)

    Article  ADS  Google Scholar 

  12. J.A. Syage, P.M. Felker, and A.H. Zewail, J. Chem. Phys. 81, 4685 (1984);

    Article  ADS  Google Scholar 

  13. J.A. Syage, P.M. Felker, and A.H. Zewail, J. Chem. Phys. 81, 4706 (1984)

    Article  ADS  Google Scholar 

  14. M.F. Scherer, J.W. Perry, F.E. Doany, and A.H. Zewail, J. Phys. Chem. 89, 894 (1985)

    Article  Google Scholar 

  15. P.M. Felker, W.R. Lambert, and A.H. Zewail, J. Chem. Phys. 82, 3003 (1985)

    Article  ADS  Google Scholar 

  16. J.F. Shepanski, M.F. Scherer, and A.H. Zewail, Chem. Phys. Lett. 103, 9 (1983)

    Article  ADS  Google Scholar 

  17. A. Amirav, M. Sonnenschein, and J. Jortner, submitted for publication

    Google Scholar 

  18. S.H. Courtney and G.R. Fleming, submitted for publication

    Google Scholar 

  19. V. Sundström and T. Gillbro, Ber. Bunsenges. Phys. Chem. 89, 222 (1985)

    Google Scholar 

  20. J. Troe, Chem. Phys. Lett. 114, 242 (1985)

    Article  ADS  Google Scholar 

  21. J. Troe, A. Amirav, and J. Jortner, Chem. Phys. Lett. 115, 245 (1985)

    Article  ADS  Google Scholar 

  22. J. Schroeder and J. Troe, Chem. Phys. Lett. 116, 453 (1985)

    Article  ADS  Google Scholar 

  23. G. Rothenberger, D.K. Negus, and R.M. Hochstrasser, J. Chem. Phys. 80, 201 (1984)

    Article  Google Scholar 

  24. S.P.Velsko and G.R. Fleming, J. Chem. Phys. 76, 3553 (1982)

    ADS  Google Scholar 

  25. S.H. Courtney and G.R. Fleming, Chem. Phys. Lett. 103, 443 (1984)

    Article  ADS  Google Scholar 

  26. G. Maneke, J. Schroeder, J. Troe, and F. Voß, Ber. Bunsenges. Phys. Chem. 89, 000 (1985)

    Google Scholar 

  27. G. Maneke, J. Schroeder, J. Troe, and F. Voß, to be published

    Google Scholar 

  28. L.A. Brey, G.B. Schuster, and H.G. Drickamer, J. Am. Chem. Soc. 101, 129 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maneke, G., Schroeder, J., Troe, J., Voß, F. (1985). Photoisomerization of Stilbene and 1,4-Diphenylbutadiene in Compressed Gases and Liquids — Density-Dependent Solvent Shift and Transport Contributions. In: Laubereau, A., Stockburger, M. (eds) Time-Resolved Vibrational Spectroscopy. Springer Proceedings in Physics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-47541-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47541-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47545-0

  • Online ISBN: 978-3-642-47541-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics