Skip to main content

Symposium Genetik der angeborenen Stoffwechselstörungen

  • Conference paper
Verhandlungen der Deutschen Gesellschaft für innere Medizin

Zusammenfassung

Das gedankliche Fundament der biochemischen Genetik verdanken wir Sir Archibald Garrod. Im ersten Jahrzehnt unseres Jahrhunderts formulierte Garrod das Konzept von den „inborn errors of metabolism“, eine Theorie, die nicht nur das Prinzip der genetischen Steuerung des Stoffwechsels vorwegnahm, sondern ausdrücklich auch die genetisch bedingte interindividuelle Variabilität auf der Ebene dessen, was wir heute als biochemische Merkmale bezeichnen würden. Garrod hat auch schon das breite Spektrum von Möglichkeiten diskutiert, das sich zwischen pathogenen Enzymdefekten einerseits und biochemischen Normvarianten andererseits ausspannt. Diesen gedanklichen Rahmen sehen wir heute mit einer stetig steigenden Wissensflut angefüllt, in der man sich nur noch anhand von Ordnungsprinzipien orientieren kann, die gleichwohl ihrerseits einem zeitlichen Wandel unterworfen sind. Als Ordnungsprinzipien bieten sich biochemische und genetische Zusammenhänge an. Die biochemische Systematik geht vom Genprodukt mit seinem meist pleiotropen Wirkungsspektrum aus. Die genetischen Ordnungsprinzipien beziehen sich demgegenüber auf die Natur der jeweiligen genetischen Veränderungen, also auf die Art, Lokalisation und Expression der jeweiligen Mutationsereignisse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bickel H (1980) Phenylketonuria: Past, present, future. J Inher Metab Dis 3: 123–132

    Article  PubMed  CAS  Google Scholar 

  2. Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes. Annu Rev Biochem 50: 349–383

    Article  PubMed  CAS  Google Scholar 

  3. Conzelmann E, Sandhoff K (1978) AB variant of infantile GM2-gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalized degredation of ganglioside Gm2 and glycolipid GA2. Proc Natl Acad Sci USA 75: 3979–3983

    Article  PubMed  CAS  Google Scholar 

  4. De Noto FM, Moore DD, Goodman HM (1981) Human growth hormone DNA sequence and mRNA structure: possible alternative splicing.

    Google Scholar 

  5. Nucleic Acid Res 9: 3719–3730

    Google Scholar 

  6. Early P, Rogers J, Davis M, Calame K, Bond M, Wall R, Hood L (1980) Two mRNA can be produced from a single immunoglobulin µ gene by alternative RNA processing pathways. Cell 20: 313–319

    Article  PubMed  CAS  Google Scholar 

  7. Galjaard H, Hoogeven A, Keijzer W, DeWit-Verbeek E, Vlek-Noot E (1974) The use of quantitative cytochemical analysis in rapid prenatal detection and somatic cell genetic studies of metabolic diseases. Histochem J 6: 491–509

    Article  PubMed  CAS  Google Scholar 

  8. Hasilik A, Neufeld EF (1980) Biosynthesis of lysosomal enzymes in fibroblasts; phosphorylation of mannose residues. J Biol Chem 255: 4946–4950

    PubMed  CAS  Google Scholar 

  9. Hösli P (1977) Quantitative assays of enzyme activity in single cells: Early prenatal diagnosis of genetic disorders. Clin Chem 23: 1476–1484

    PubMed  Google Scholar 

  10. Krieg T, Ihme A, Weber L, Kirsch E, Mueller PK (1981) Molecular defects of collagen metabolism in the Ehlers-Danlos-Syndrome. Int J Dermatol 20: 415–425

    Article  PubMed  CAS  Google Scholar 

  11. Krone W, Wolf U (1978) Chromosomes and protein variation. In: Mayo O, Brock DJH (eds) The biochemical genetics of man. Academic Press, New York, pp 93–154

    Google Scholar 

  12. Maquat L, Kinniburgh AJ, Beach LR, Honig GR, Lazerson J, Ershler WB, Ross J (1980) Processing of human ß-globin mRNA precursor to mRNA is defective in three patients with ß+-thalassaemia. Proc Natl Acad Si USA 77: 4287–4291

    Article  CAS  Google Scholar 

  13. McKusick VA (1978) Mendelian inheritance in man, 5th ed. John Hopkins Univ Press, Baltimore London

    Google Scholar 

  14. Mohandas T, Shapiro LJ, Sparkes RS, Sparkes MC (1979) Regional assignment of the steroid sulfatase X-linked ichthyosis locus: Implications for a non-inactivated region on the short arm of the human X-chromosome. Proc Natl Acad Sci USA 76: 5779–5783

    Google Scholar 

  15. Müller CR, Migl B, Traupe A, Ropers HH (1980) X-linked steroid sulfatase: Evidence for different gene dosage in males and females. Hum Genet 54: 197–199

    Google Scholar 

  16. Ruddle FH, Creagan RP (1975) Parasexual approaches to the genetics of man. Annu Rev Genet 9: 407–486

    Article  PubMed  CAS  Google Scholar 

  17. Wolf U, Fraccaro M, Mayerova A, Hecht T, Maraschio P, Hameister H (1980) A gene controlling H-Y antigen on the X-chromosome: tentative assignment by deletion mapping to Xp223. Hum Genet 54: 149–154

    Article  PubMed  CAS  Google Scholar 

  18. Wunder E, Burghardt U, Lang B, Hamilton L (1981) Fanconi’s anemia: Anomaly of enzyme passage through the nuclear membrane? Hum Genet 58: 149–155

    Article  PubMed  CAS  Google Scholar 

  19. Basu SK, Brown MS, Ho YK, Havel RJ, Goldstein JL (1981) Mouse macrophages synthesize and secret a protein resembling apolipoprotein E. Proc Natl Acad Sci USA 78: 7545

    Article  CAS  Google Scholar 

  20. Boberg J, Augustin J, Baginsky ML, Tejeda P, Brown WV (1977) Quantitative determination of hepatic and lipoprotein lipase activities from human postheparin plasma. J Lipid Res 18: 544

    PubMed  CAS  Google Scholar 

  21. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298: 1265

    Article  PubMed  CAS  Google Scholar 

  22. Brown MS, Goldstein JL (1976) Receptor-mediated control of cholesterol metabolism. Science 181: 150

    Article  Google Scholar 

  23. Brown MS, Goldstein JL, Fredrickson DS (1982a) Familial type 3 hyperlipoproteinemia (dysbetalipoproteinemia). In: Stanbury JB, Wyngaarden JS, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York (in press)

    Google Scholar 

  24. Brown MS, Goldstein JF (1982b) Personal communication

    Google Scholar 

  25. Franceschini G, Sirtori M, Gianfraneschi G, Sirtori CL (1981) Relation between the HDL apoproteins and A-I isoproteins in subjects with A-I Milano abnormality. Metabolism 30: 502

    Article  PubMed  CAS  Google Scholar 

  26. Fredrickson DS (1960) Essential familial hyperlipidemia. In: Stanbury JB, Wyngaarden JS, Fredrickson DS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, p 489

    Google Scholar 

  27. Fredrickson DS (1966) Familial high-density lipoprotein deficiency: Tangier disease. In: Stanbury JB, Wyngaarden JS, Fredrickson DS (eds) The — metabolic basis of inherited disease. McGraw-Hill, New York, p 486

    Google Scholar 

  28. Fredrickson DS, Altrocchi PH, Avioli LV, Goodman DS, Goodman HC (1961) Tangier disease. Ann Intern Med 55: 1016

    Article  Google Scholar 

  29. Fredrickson DS, Lees RS (1966) Familial hyperlipoproteinemia. In: Stanbury JB, Wyngaarden JS, Fredrickson DS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, p 429

    Google Scholar 

  30. Fredrickson DS, Levy RI, Lees RS (1967) Fat transport in lipoproteins — an integrated approach to mechanisms and disorders. N Engl J Med 276: 32, 94, 148, 215, 273

    Article  Google Scholar 

  31. Fredrickson DS, Morganroth J, Levy RI (1975) Type III hyperlipoproteinemia: analysis of two contemporary definitions. Ann Intern Med 82: 150

    Article  PubMed  CAS  Google Scholar 

  32. Fredrickson DS, Goldstein JL, Brown MS (1978) The familial hyperlipoproteinemias. In: Stanbury JB, Wyngaarden JS, Fredrickson DS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, p 604

    Google Scholar 

  33. Giselli G, Schaefer EJ, Gascon P, Brewer BH (1981) Type III hyperlipoproteinemia associated with apolipoprotein E deficiency. Science 214: 1239

    Google Scholar 

  34. Gjone E, Norum KR, Glomset JA (1978) Familial lecithin: cholesterol acyltransferase deficiency. In: Stanbury JB, Wyngaarden JS, Fredrickson DS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, chapter 29

    Google Scholar 

  35. Glomset JA (1968) The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 9: 155

    PubMed  CAS  Google Scholar 

  36. Gofman JW, Rubin L, McGinley JP, Jones HB (1954) Hyperlipoproteinemia. Am J Med 17: 514

    Article  PubMed  CAS  Google Scholar 

  37. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG (1973) Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52: 1544

    Article  PubMed  CAS  Google Scholar 

  38. Goldstein JL, Brown MS (1982) Familial hypercholesterolemia. In: Stanbury JB, Wyngaarden JS, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York (in press)

    Google Scholar 

  39. Greten H, De Grella R, Klose G, Rascher W, DeJennes JL, Gjone E (1976) Measurement of two plasma triglyceride lipases by an immunochemical method: studies in patients with hypertriglyceridemia. J Lipid Res 17: 203

    PubMed  CAS  Google Scholar 

  40. Havel RJ (1982) Familial dysbetalipoproteinemia: new aspects of pathogenesis and diagnosis. Med Clin N Amer 66

    Google Scholar 

  41. Havel RJ, Gordon RS Jr (1960) Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest 39: 1777

    Article  PubMed  CAS  Google Scholar 

  42. Havel RJ, Shore VG, Shore B, Biou DM (1970) Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circ Res 27: 595

    Article  PubMed  CAS  Google Scholar 

  43. Havel RJ, Chao Y-S, Windler EE, Kotite L, Guo LS (1980) Isoprotein specificity in the hepatic uptake of apolipoprotein E and the pathogenesis of familial dysbetalipoproteinemia. Proc Natl Acad Sci USA 77: 4349

    Article  CAS  Google Scholar 

  44. Herbert PH, Assmann G, Gotto AM, Fredrickson DS (1982) The familial hyperlipoproteinemias. In: Stanbury JB, Wyngaarden JS, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York (in press)

    Google Scholar 

  45. Holt LE, Aylward FX, Timbres HG (1939) Idiopathic familial lipemia. Johns Hopkins Med J 64: 279

    Google Scholar 

  46. Huttunen JK, Enholm C, Kinnunen PKJ, Nikkila EA (1975) An immunochemical method for selective measurement of two triglyceride lipases in human posthepar plasma. Clin Chim Acta 63: 335

    Article  PubMed  CAS  Google Scholar 

  47. Kane JP, Hardman DA, Paulus HE (1980) Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. Proc Natl Acad Sci USA 77: 2465

    Article  PubMed  CAS  Google Scholar 

  48. Kostner G (1974) Studies on the cofactor requirements for lecithin: cholesterol acyltransferase. Scand J Clin Lab Invest [Suppl 33] 137: 19

    CAS  Google Scholar 

  49. Kraus RM, Levy RI, Fredrickson DS (1977) Selective measurement of two lipase activities in post-heparin plasma from normal subjects and patients with hyperlipoproteinemia. J Clin Invest 54: 1107

    Article  Google Scholar 

  50. Lamy M, Frezal J, Polonovski J, Rey J (1960) L’absence congenitale de beta-lipoproteines. C R Soc Biol (Paris) 154: 1974

    Google Scholar 

  51. LaRosa JC, Levy RI, Herbert P, Lux SE, Fredrickson DS (1970) A specific activator for lipoprotein lipase. Biochem Biophys Res Commun 41: 57

    Article  PubMed  CAS  Google Scholar 

  52. Mabry CC, DiGeorge AM, Auerbach VH (1960) Studies concerning the defect in a patient with acanthocytosis. Clin Res 8: 371

    Google Scholar 

  53. Mahley RW (1982) Atherogenic hyperlipoproteinemia: the cellular and molecular biology of plasma lipoproteins altered by dietary fat and cholesterol. Med Clin N Amer 66: 375

    PubMed  CAS  Google Scholar 

  54. Mahley RW, Hui D, Innerarity TL, Weisgraber KH (1981) Two independent lipoprotein receptors on hepatic membranes of dog, swine, and man. J Clin Invest 68: 1197

    Article  PubMed  CAS  Google Scholar 

  55. Malloy MJ, Kane JP, Hardman DA, Hamiltor RL, Dalai KB (1981) Normotriglyceridemic abetalipoproteinemia: absence of the B-100 apolipoprotein. J Clin Invest 67: 1441

    Article  PubMed  CAS  Google Scholar 

  56. Menzel H-J, Kladetzky HG, Assmann G (1982) One-step screening method for the polymorphism of apolipoproteins A-I, A-II and A-IV. J Lipid Res (in press)

    Google Scholar 

  57. Muller C (1938) Xanthomata, hypercholesterolemia, angina pectoris. Acta Med Scand [Suppl] 89: 75

    Google Scholar 

  58. Nikkila EA (1982) Familial lipoprotein lipase deficiency and related disorders of chylomicron metabolism. In: Stanbury JB, Wyngaarden JS, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York (in press)

    Google Scholar 

  59. Nikkila EA, Arp A (1973) Family study of serum lipids and lipoproteins in coronary heart disease. Lancet 1: 954

    Article  PubMed  CAS  Google Scholar 

  60. Rall SC Jr, Weisgraber KH, Mahley RW (1982a) Human apolipoprotein E: the complete amino acid sequence. J Biol Chem 257: 4171

    PubMed  CAS  Google Scholar 

  61. Rall Sc Jr, Weisgraber KH, Innerarity TL, Mahley RW (1982b) Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  62. Rose HG, Kranz P, Weinstock M, Juliano J, Haft JI (1972) Inheritance of combined hyperlipoproteinemia: evidence from a new lipoprotein phenotype. Am J Med 54: 148

    Article  Google Scholar 

  63. Salt

    Google Scholar 

  64. HB, Wolff OH, Lloyd JK, Fosbrooke AS, Cameron AH, Hubble DV (1960) On having no beta-lipoprotein: a syndrome comprising abetalipoproteinemia, acanthocytosis, and steatorrhea. Lancet 2: 325

    PubMed  Google Scholar 

  65. Schneider WH, Kovanen PT, Brown MS, Goldstein JL, Utermann G, Weber W, Havel RJ, Kotite L, Kane JP, Innerarity TL, Mahley RW (1981) Familial dysbetalipoproteinemia: abnormal binding of mutant apoprotein E to low density lipoprotein receptors of human fibroblasts and membranes from liver and adrenal of rats, rabbits, and cows. J Clin Invest 68: 1075

    CAS  Google Scholar 

  66. Shore VG, Shore B (1970) Isolation and characterization of human serum lipoproteins. Biochemistry 11: 4510

    Google Scholar 

  67. Tannhauser HJ, Magendetz H (1938) The different clinical groups of xanthomatous diseases: a clinical physiological study of 22 cases. Ann Intern Med 11: 1662

    Article  Google Scholar 

  68. Utermann G, Haeschke M, Menzal J (1975) Familial hyperlipoproteinemia type III: deficiency of a specific apolipoprotein (apo E-III) in very low density lipoproteins. FEBS Lett 56: 352

    Article  PubMed  CAS  Google Scholar 

  69. Utermann G, Canzler H, Hees M, Jaeschke M, Muhlfellner G, Schoenborn W, Vogelberg KH (1977) Studies on the metabolic defect in broad-beta disease (hyperlipoproteinemia type III). Clin Genet 12: 139

    Article  PubMed  CAS  Google Scholar 

  70. Utermann G, Pruin N, Steinmetz A (1979) Polymorphism of apolipoprotein E.III: effect of a single polymorphic gene locus on plasma lipid levels in man. Clin Genet 15: 63

    Article  PubMed  CAS  Google Scholar 

  71. Utermann G, Hees M, Steinmetz A (1981a) Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinemia in man. Nature 269: 11

    Google Scholar 

  72. Utermann G, Steinmetz A, Haas J, Feusner G, Franceschini G (1981b) Apolipoproteinopathies: rapid method for screening and characterization of genetic apolipoprotein A variants. J Biol Chem (in press)

    Google Scholar 

  73. Weisgraber KH, Rall SC Jr, Mahley RW (1981) Human E apoprotein heterogeneity: cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem 256: 9077

    CAS  Google Scholar 

  74. Weisgraber KH, Innerarity TL, Mahley RW (1982) Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem 257: 2518

    CAS  Google Scholar 

  75. Zannis VI, Breslow JL (1981a) Human very low density lipoprotein apolipoprotein A isoprotein polymorphism is explained by genetic variation and post-translational modification. Biochemistry 20: 1033

    Article  PubMed  CAS  Google Scholar 

  76. Zannis VI, Just PW, Breslow JL (1981b) Human apolipoprotein E isoprotein subclasses are genetically determined. Am J Hum Genet 33: 11

    CAS  Google Scholar 

  77. Hers HG, Van Hoof F (1973) Lysosomes and storage diseases. Academic Press, New York London

    Google Scholar 

  78. Nausieda PA, Klawans HL (1977) Lipid storage disorders. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 29. Metabolic and deficiency diseases of the nervous system, part III. North Holland Publ. Comp., Amsterdam New York Oxford, pp 345–390

    Google Scholar 

  79. Seitelberger et al. (1957) Spätinfantile amaurotische Idiotie. Arch Psychiatr Nervenkr 196: 154–190

    Article  CAS  Google Scholar 

  80. Seitelberger F (1964) Über die Gehirnbeteiligung bei der Gaucherschen Krankheit im Kindesalter. Arch Psychiatr Nervenkr 206: 419–440

    Article  PubMed  CAS  Google Scholar 

  81. Seitelberger F, Bernheimer H (1968) Über das Verhalten der Ganglioside im Gehirn bei 2 Fällen von spätinfantiler amaurotischer Idiotie. Wien Klin Wochenschr 80: 163–164

    PubMed  Google Scholar 

  82. Stanbury JB, Wyngaarden JB, Fredrickson DS (1978) The metabolic basis of inherited disease. McGraw Hill Book Comp.

    Google Scholar 

  83. Kelley WN, Wyngaarden JB (1982) Clinical syndromes associated with hypoxanthine-guanine phosphoribosyltransferase deficiency. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) Metabolic basis of inherited disease, 5th ed. McGraw-Hill, New York, p 1115

    Google Scholar 

  84. Seegmiller JE, Rosenbloom FM, Kelley WN (1967) An enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155: 1682

    Google Scholar 

  85. Lesch M (1970) The — purine revolution. N Engl J Med 28: 1221

    Article  Google Scholar 

  86. Wyngaarden JB, Kelley WN (1982) Gout. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) Metabolic basis of inherited disease, 5th ed. McGraw-Hill, p 1043

    Google Scholar 

  87. Sperling O, Persky-Brosh S, Boer P, De Vries A (1973) Human erythrocyte phosphoribosylpyrophosphate synthetase mutationally altered in regulatory properties. Biochem Med 7: 389

    Article  PubMed  CAS  Google Scholar 

  88. Holmes EW, Wyngaarden JB (1982) Hereditary xanthinuria. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) Metabolic basis of inherited disease, 5th ed. McGraw-Hill, New York, p 1192

    Google Scholar 

  89. Simmonds HA, Van Acker KJ (1982) Adenine phosphoribosyltransferase deficiency: 2,8-dihydroxyadenine lithiasis. In: Stanbury TB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) Metabolic basis of inherited disease, 5th ed. McGraw-Hill, New York, p 1144

    Google Scholar 

  90. Swain JL, Sabina RL, Holmes EW (1982) Myoadenylate deaminase deficiency. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) Metabolic basis of inherited disease, 5th. ed. McGraw-Hill, New York, p 1184

    Google Scholar 

  91. Fishbein WN, Armbrustmacher VW, Griffin JL (1978) Myoadenylate deaminase deficiency: A new disease of muscle. Science 200: 545

    Google Scholar 

  92. Sabina RL, Swain JL, Patten BM, Ashizawa T, O’Brien W, Holmes EW (1980) Disruption of the purine nucleotide cycle: A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency. J Clin Invest 66: 1419

    Google Scholar 

  93. Kredich NM, Hershfield MS (1982) Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) Metabolic basis of inherited disease, 5th ed. McGraw-Hill, New York, p 1158

    Google Scholar 

  94. Hers H-G, Van den Berghe G (1979) Enzyme defect in primary gout. Lancet 1: 585

    Article  PubMed  CAS  Google Scholar 

  95. Van den Berghe G, Hers H-G (1980) Abnormal AMP deaminase in primary out. Lancet 2: 1090

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krone, W. et al. (1982). Symposium Genetik der angeborenen Stoffwechselstörungen. In: Schlegel, B. (eds) Verhandlungen der Deutschen Gesellschaft für innere Medizin. Verhandlungen der Deutschen Gesellschaft für innere Medizin, vol 88. J.F. Bergmann-Verlag, Munich. https://doi.org/10.1007/978-3-642-47093-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47093-6_27

  • Publisher Name: J.F. Bergmann-Verlag, Munich

  • Print ISBN: 978-3-8070-0332-0

  • Online ISBN: 978-3-642-47093-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics