Skip to main content

Functional Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Schizophrenia

  • Conference paper
Search for the Causes of Schizophrenia
  • 129 Accesses

Abstract

Functional magnetic resonance imaging (fMRI) is a recently developed noninvasive technique for examining brain function and relies on detecting changes in MRI signals from brain regions that are differentially activated by sensory, cognitive, or pharmacological stimuli. For an in depth discussion of fMRI principles and methodology, see Sanders and Orrison (1995). fMRI relies on the fact that capillaries and red blood cells within tissues induce microscopic magnetic field gradients that shorten the effective transverse relaxation decay rate (T2 *) to a degree that depends on the precise magnetic susceptibility of blood. Magnetic susceptibility determines the intensity of magnetic field experienced within a region and depends on the local oxygen tension. Blood containing oxyhemoglobin has a magnetic susceptibility close to that of tissue water, whereas blood containing deoxyhemoglobin (which is paramagnetic) has a very different susceptibility. Neuronal activation in response to some stimulus produces a local blood flow increase whereby local oxygen delivery actually exceeds oxygen utilization, and the net amount of deoxyhemoglobin decreases. The result is that the oxygen tension of the tissue rises, and venous blood becomes more oxygenated. The intravascular magnetic susceptibility then more closely matches the surrounding tissue than it does when the vessels contain deoxyhemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartha R, Williamson PC, Drost DJ, Malla A, Carr TJ, Cortese L, Canaran G, Rylett J, Neufeld RWJ (1997) Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 54:959–963

    Article  PubMed  CAS  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weiskopf RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Nawroz S, Mattay VS, Barnett AS, Duyn JH, Moonen CTW, Frank JA, Tedeschi G, Weinberger DR (1996) Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multi-slice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 153:1554–1563

    PubMed  CAS  Google Scholar 

  • Bertolino A, Callicott JH, Elman I, Duyn JH, Tedeschi G, Frank JA, Pickar D, Weinberger DR (1998 a) Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 43:641–648

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Kumra S, Callicott J, Mattay VS, Lestz RM, Jacobsen L, Barnett IS, Duyn JH, Frank JA, Rapoport JL, Weinberger DR (1998) A common pattern of cortical pathology in childhood-onset and adult-onset schizophrenia as identified by proton magnetic resonance spectroscopic imaging. Am J Psychiatry 155:1376–1383

    PubMed  CAS  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  PubMed  CAS  Google Scholar 

  • Buckley P, Moore C, Long H, Larkin C, Thompson P, Mulvany F, Redmond O, Stack J, Ennis JT, Waddington JL (1994) 1H magnetic resonance spectroscopy of the left temporal and frontal lobes in schizophrenia: clinical, neurodevelopmental, and cognitive correlates. Biol Psychiatry 36:792–800

    Article  PubMed  CAS  Google Scholar 

  • Buckley PF, Friedman L, Wu D et al. (1995) Functional magnetic resonance imaging in schizophrenia. Proc Soc Magn Reson 3:153

    Google Scholar 

  • Calabrese G, Deicken RF, Fein G, Merrin EL, Schoenfeld F, Weiner MW (1992) 31Phosphorous magnetic resonance spectroscopy of the temporal lobes in schizophrenia. Biol Psychiatry 32:26–32

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R, Goldberg T, van Gelderen P, Mattay VS, Frank JA, Moonen CT, Weinberger DR (1998) Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacol 18:186–196

    Article  CAS  Google Scholar 

  • Callicott JH, Egan MF, Bertolino A, Mattay VS, Langheim FJP, Frank J, Weinberger DR (1998) Hippocampal N-acetyl-aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol Psychiatry 44:941–950

    Article  PubMed  CAS  Google Scholar 

  • Choe BY, Kim KT, Suh TS, Lee C, Paik IH, Bahk YW, Shinn KS, Lenkinski RE (1994) 1H magnetic resonance spectroscopy characterization of neuronal dysfunction in drug-naive, chronic schizophrenia. Acad Radiol 1:211–216

    Article  PubMed  CAS  Google Scholar 

  • Choe BY, Suh TS, Shinn KS, Lee CW, Lee C, Paik IH (1996) Observation of metabolic changes in chronic schizophrenia after neuroleptic treatment by in vivo hydrogen magnetic resonance spectroscopy. Investigative Radiol 31:345–352

    Article  CAS  Google Scholar 

  • Cohen BM, Yurgelun-Todd D, English CD, Renshaw PF (1995) Abnormalities of regional distribution of cerebral vasculature in schizophrenia detected by dynamic susceptibility contrast MRI. Am J Psychiatry 152:1801–1803

    PubMed  CAS  Google Scholar 

  • Curtis VA, Bullmore ET, Brammer MJ, Wright IC, Williams SCR, Morris RG, Sharma TS, Murray RM, McGuire PK (1998) Attenuated frontal activation during a verbal fluency task in. patients with schizophrenia. Am J Psychiatry 155:1056–1063

    PubMed  CAS  Google Scholar 

  • Deicken RF, Merrin EL, Calabrese G, Dillon WP, Meyerhoff D, Weiner MW, Fein G (1994) 31Phosphorous magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia. Biol Psychiatry 36:503–510

    Article  PubMed  CAS  Google Scholar 

  • Deicken RF, Merrin EL, Floyd TC, Weiner MW (1995 a) Correlation between left frontal phospholipids and Wisconsin Card Sort Test performance in schizophrenia. Schizophr Res 14:177–181

    Article  PubMed  CAS  Google Scholar 

  • Deicken RF, Merrin EL, Calabrese G, Dillon WP, Fein G, Weiner MW (1995 b) Asymmetry of temporal lobe phosphorous metabolism in schizophrenia: a 31Phosphorous magnetic resonance spectroscopic imaging study. Biol Psychiatry 38:279–286

    Article  PubMed  CAS  Google Scholar 

  • Deicken RF, Calabrese G, Merrin G, Fein G, Weiner MW (1995 c) Altered basal ganglia phosphorous metabolism in chronic schizophrenia. Am J Psychiatry 152:126–129

    PubMed  CAS  Google Scholar 

  • Deicken RF, Ling Z, Corwin F, Vinogradov S, Weiner MW (1997 a) Decreased left frontal lobe N-acetylaspartate in schizophrenia. Am J Psychiatry 154:688–690

    PubMed  CAS  Google Scholar 

  • Deicken RF, Zhou L, Schuff N, Weiner MW (1997 b) Proton magnetic resonance spectroscopy of the anterior cingulate region in schizophrenia. Schizophr Res 27:65–71

    Article  PubMed  CAS  Google Scholar 

  • Deicken RF, Zhou L, Schuff N, Fein G, Weiner MW (1998) Hippocampal neuronal dysfunction in schizophrenia as measured by proton magnetic resonance spectroscopy. Biol Psychiatry 43:483–488

    Article  PubMed  CAS  Google Scholar 

  • Deicken RF, Pegues M, Amend D (1999) Reduced hippocampal N-acetylaspartate without volume loss in schizophrenia. Schizophr Res, in press

    Google Scholar 

  • Deicken RF, Johnson C, Schuff N, Weiner MW (1999) Proton magnetic resonance spectroscopy of the thalamus in schizophrenia. Am J Psychiatry, in press

    Google Scholar 

  • De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727

    Article  PubMed  Google Scholar 

  • Feinberg I (1982) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiat Res 17:319–334

    Article  PubMed  Google Scholar 

  • Frahm J, Michaelis T, Merboldt KD, Hanicke W, Gyngell ML, Bruhn H (1991) On the N-acetyl methyl resonance in localized 1H NMR spectra of human brain in vivo. NMR Biomed 4:201–204

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Nakano T, Takano T, Hokazono Y, Asakura T, Tsuji T (1992) Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging. Acta Psychiatrica Scandinavica 86:455–462

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Nakano T, Takano T, Takeuchi K, Yamada K, Fukuzako T, Akimoto H (1996) Proton magnetic resonance spectroscopy of basal ganglia in chronic schizophrenia. Biol Psychiatry 40:14–18

    Article  PubMed  CAS  Google Scholar 

  • Fukuzako H, Takeuchi K, Ueyama K, Fukuzako T, Hokazono Y, Hirakawa K, Yamada K, Hashiguchi T, Takigawa M, Fujimoto T (1994) 31P magnetic resonance spectroscopy of the medial temporal lobe of schizophrenic patients with neuroleptic-resistant marked positive symptoms. Eur Arch of Psychiatry and Clin Neurosci 244:236–240

    Article  CAS  Google Scholar 

  • Fukuzako H, Takeuchi K, Hokazono Y, Fukuzako T, Yamada K, Hashiguchi T, Obo Y, Ueyama K, Takigawa M, Fujimoto T (1995) Proton magnetic resonance spectroscopy of the left medial temporal and frontal lobes in chronic schizophrenia. Psychiatry Res: Neuroimaging 61:193–200

    Google Scholar 

  • Gattaz WF, Kollisch M, Thuren T, Virtanen JA, Kinnunen P (1987) Increased phospholipase A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry 22:421–426

    Article  PubMed  CAS  Google Scholar 

  • Heimberg C, Komoroski RA, Lawson WB, Cardwell D, Karson CN (1998) Regional proton magnetic resonance spectroscopy in schizophrenia and exploration of drug effect. Psychiatry Res: Neuroimaging 83:105–115

    Google Scholar 

  • Hinsberger AD, Williamson PC, Carr TJ, Stanley JA, Drost DJ, Densmore M, MacFabe GC, Montemurro DG (1997) Magnetic resonance imaging volumetric and phosphorous-31 magnetic resonance spectroscopy measurements in schizophrenia. J Psychiatry Neurosci 22:111–117

    PubMed  CAS  Google Scholar 

  • Horrobin DF, Glen AIM, Vaddadi K (1994) The membrane hypothesis of schizophrenia. Shizo-phr Res 13:195–207

    Article  CAS  Google Scholar 

  • Howard R, Williams S, Bullmore E, Brammer M, Meilers J, Woodruff P, David A (1995) Cortical response to exogenous visual stimulation during visual hallucinations. Lancet 345:70

    Article  PubMed  CAS  Google Scholar 

  • Hugg JW, Kuzniecky RI, Gilliam FG, Morawetz RB, Faught RE, Hetherington HP (1996) Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging. Ann Neurol 40:236–239

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S (1995) Lateralized abnormality of high-energy phosphate and bilateral reduction of phosphomonoester measured by phosphorous-31 magnetic resonance spectroscopy of the frontal lobes in schizophrenia. Psychiatry Res: Neuroimaging 61:151–160

    Google Scholar 

  • Lim KO, Adalsteinsson E, Spielman D, Sullivan EF, Rosenbloom MJ, Pfefferbaum A (1998) Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia. Arch Gen Psychiatry 55:346–352

    Article  PubMed  CAS  Google Scholar 

  • Mager T, Weilke FA, Leinsinger GL et al. (1996) Activation of the motor cortex investigated by functional MR imaging. NeuroImage 3:S497

    Article  Google Scholar 

  • Maier M, Ron MA, Barker GJ, Tofts PS (1995) Proton magnetic resonance spectroscopy: an in-vivo method of estimating hippocampal neuronal depletion in schizophrenia. Psychol Med 25:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Maier M, Ron MA (1996) Hippocampal age-related changes in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 22:5–17

    Article  PubMed  CAS  Google Scholar 

  • Mattay VS, Callicott JH, Bertolino A, Santha AK, Tallent KA, Goldberg TE, Frank JA, Weinberger DR (1997) Abnormal functional lateralization of the sensorimotor cortex in patients with schizophrenia. Neuroreport 8:2977–2984

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah HA, Skinner TE, Schmalbrock P, Robitaille PM (1994) Proton magnetic resonance spectroscopy (1H MRS) of the hippocampal formation in schizophrenia: a pilot study. Br J Psychiatry 165:481–485

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan E, Redmond O, Ennis R, Stack J, Kinsella A, Ennis JT, Larkin C, Waddington JL (1991) Initial investigation of the left temporoparietal region in schizophrenia by 31P magnetic resonance spectroscopy. Biol Psychiatry 29:1149–1152

    Article  PubMed  Google Scholar 

  • Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, Allen M (1991) Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. Arch Gen Psychiatry 48:563–568

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Keshavan MS, Minshew NJ (1993) 31P nuclear magnetic resonance spectroscopy: neurodevelopment and schizophrenia. Schizophr Bull 19:35–53

    PubMed  CAS  Google Scholar 

  • Powartka J, Drost DJ, Williamson PC (1997) A 2D 31P chemical shift imaging study with 1H decoupling of medicated schizophrenics and controls. Proc Int Soc Magn Reson Med 2:1224

    Google Scholar 

  • Rango M, Spagnoli D, Tomei G, Bamonti F, Scarlato G, Zetta L (1995) Central nervous system trans-synaptic effects of acute axonal injury: a 1H magnetic resonance spectroscopy study. Magn Reson Med 33:595–600

    Article  PubMed  CAS  Google Scholar 

  • Renshaw PF, Yurgelun-Todd DA, Cohen BM (1994) Greater hemodynamic response to photic stimulation in schizophrenic patients. Am J Psychiatry 151:1493–1494

    PubMed  CAS  Google Scholar 

  • Renshaw PF, Yurgelun-Todd DA, Tohen M, Gruber S, Cohen BM (1995) Temporal lobe proton magnetic resonance spectroscopy of patients with first-episode psychosis. Am J Psychiatry 152:444–446

    PubMed  CAS  Google Scholar 

  • Rosen BR, Belliveau JS, Chein D (1989) Perfusion imaging by nuclear magnetic resonance. Magn Reson Quarterly 5:263–281

    CAS  Google Scholar 

  • Ross BM, Hudson C, Erlich J, Warsh JJ, Kish SJ (1997) Increased phospholipid breakdown in schizophrenia: evidence for the involvement of a calcium-independent phospholipase A2. Arch Gen Psychiatry 54:487–494

    Article  PubMed  CAS  Google Scholar 

  • Sanders JA, Orrison WW (1995) Functional magnetic resonance imaging. In: Orrison WW, Levine JD, Sanders JA, Hartshorne MR (eds) Functional brain imaging. Mosby, St. Louis, Missouri, pp 239–326

    Google Scholar 

  • Sharma R, Venkatasubramanian PN, Barany M, Davis JM (1992) Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophr Res 8:43–49

    Article  PubMed  CAS  Google Scholar 

  • Shioiri T, Kato T, Inubushi T, Murashita J, Takahashi S (1994) Correlations of phosphomonoesters measured by phosphorous-31 magnetic resonance spectroscopy in the frontal lobes and negative symptoms in schizophrenia. Psychiatry Res: Neuroimaging 55:233–235

    Article  Google Scholar 

  • Shioiri T, Someya T, Murashita J, Kato T, Hamakawa H, Fujii K, Inubushi T (1997) Multiple regression analysis of relationship between frontal lobe phosphorous metabolism and clinical symptoms in patients with schizophrenia. Psychiatry Res: Neuroimaging 76:113–122

    Article  PubMed  CAS  Google Scholar 

  • Schroder J, Wenz F, Schad LR, Baudendistel K, Knopp MV (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia: a study with functional magnetic resonance imaging. Br J Psychiatry 167:197–201

    Article  PubMed  CAS  Google Scholar 

  • Stanley JA, Williamson PC, Drost DJ, Carr TJ, Rylett RJ, Morrison-Stewart S, Thompson RT (1994) Membrane phospholipid metabolism and schizophrenia: an in-vivo 31P MR spectroscopy study. Schizophr Res 13:209–215

    Article  PubMed  CAS  Google Scholar 

  • Stanley JA, Williamson PC, Drost DJ, Carr TJ, Rylett RJ, Malla A, Thompson RT (1995) An in-vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorous magnetic resonance spectroscopy. Arch Gen Psychiatry 52:399–406

    Article  PubMed  CAS  Google Scholar 

  • Stanley JA, Williamson PC, Drost DJ, Rylett RJ, Carr TJ, Malla A, Thompson RT (1996) An in vivo proton magnetic resonance spectroscopy study of schizophrenia patients. Schizophr Bull 22:597–609

    PubMed  CAS  Google Scholar 

  • Tsai G, Coyle JT (1995) N-acetylaspartate in neuropsychiatric disorders. Progress in Neurobiol 46:531–540

    Article  CAS  Google Scholar 

  • Volz H, Gaser C, Hager F, Rzanny R, Mentzel H, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1997 a) Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test — a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 75:145–157

    Article  PubMed  CAS  Google Scholar 

  • Volz J, Rzanny R, Rossger G, Hubner G, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1998) 31Phosphorous magnetic resonance spectroscopy of the dorsolateral prefrontal cortex region in schizophrenics — a study including 50 patients and 36 controls. Biol Psychiatry 44:399–404

    Article  PubMed  CAS  Google Scholar 

  • Wenz F, Schad LR, Knopp MV, Baudendistel KT, Flomer F, Schroder J, van Kaick G (1994) Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging 12:975–982

    Article  PubMed  CAS  Google Scholar 

  • Woodruff PWR, Wright IC, Bullmore ET, Brammer M, Howard RJ, Williams SCR, Shapleski J, Rossell S, David AS, McGuire PK, Murray RM (1997) Auditory hallucinations and the temporal cortical response to speech in schizophrenia. Am J Psychiatry 154:1676–1682

    PubMed  CAS  Google Scholar 

  • Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF (1996) Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry 153:200–205

    PubMed  CAS  Google Scholar 

  • Yurgelun-Todd DA, Renshaw PF, Gruber SA, Waternaux C, Cohen B (1996) Proton magnetic resonance spectroscopy of the temporal lobes in schizophrenics and normal controls. Schizophr Res 19:55–59

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Deicken, R.F. (1999). Functional Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Schizophrenia. In: Gattaz, W.F., Häfner, H. (eds) Search for the Causes of Schizophrenia. Steinkopff. https://doi.org/10.1007/978-3-642-47076-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47076-9_22

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-47078-3

  • Online ISBN: 978-3-642-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics