Skip to main content

Outstanding Issues in Neuropathology and Neurochemistry of Schizophrenia

  • Conference paper
Search for the Causes of Schizophrenia
  • 130 Accesses

Abstract

The four presentations in this section eloquently highlighted some of the new approaches and trends in studies of neurochemistry and neuropathology in schizophrenia over the last five years. The main features have been:

  • Pervasive use of in situ neurochemistry — the visualisation and quantitation of neurochemical parameters in brain sections.

  • Increasing use of high-resolution techniques permitting the visualisation of neurochemistry and molecular mechanisms within individual cellular elements. This has the great promise of identifying aberrant connectivity and circuitry.

  • Spreading use of cytoarchitectural and stereological methods to gain accurate estimates of cell density and number.

  • The establishment of the Stanley Foundation collection of brains from patients with schizophrenia, controls, depressives and bipolars. This offers major prospects for replication by different laboratories and integration of findings in the same set of brains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE, Jones EG (1995) GABA(A) receptor subunit gene expression in human prefrontal cortex: Comparison of schizophrenics and controls. Cerebral Cortex 5:550–560

    Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr, Jones EG (1996a) Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 53:425–436

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, Jones EG (1996b) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266

    Article  Google Scholar 

  • Arnold SE, Franz BR, Trojanowski JQ, Moberg PJ, Gur RE (1996) Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neu-ropathologica 91:269–277

    CAS  Google Scholar 

  • Barta PE, Pearlson GD, Brill LB 2nd, Royall R, McGilchrist IK, Pulver AE, Powers RE, Casanova MF, Tien AY, Frangou S, Petty RG (1997) Planum temporale asymmetry reversal in schizophrenia: replication and relationship to gray matter abnormalities. Am J Psychiatry 154:661–667

    PubMed  CAS  Google Scholar 

  • Beasley CL, Reynolds GP (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24:349–355

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Sorensen I, Vincent SL, Bird ED, Sathi M (1992a) Increased density of glutamate-immunoreactive vertical processes in superficial laminae in cingulate cortex of schizophrenic brain. Cerebral Cortex 2:503–512

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Vincent SL, Marie A, Khan Y (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (1998) Model generation and testing to probe neural circuitry in the cingulate cortex of postmortem schizophrenic brain. Schizophr Bull 24:219–230

    PubMed  CAS  Google Scholar 

  • Burnet PWJ, Eastwood SL, Harrison PJ (1996) 5HT1A and 5HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology 15:442–455

    Google Scholar 

  • Cannon TD, Van Erp TG, Huttunen M, Lonnqvist J, Salonen O, Valanne L, Poutanen VP, Standertskjold-Nordenstam CG, Gur RE, Yan M (1998) Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 55:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377–381

    Article  PubMed  CAS  Google Scholar 

  • Deakin JFW, Slater P, Simpson MDC, Gilchrist AC, Skan WJ, Royston MC, Reynolds GP, Cross AJ (1989) Frontal cortical & left temporal glutamatergic dysfunction in schizophrenia. J Neu-rochemistry 52:1781–1786

    CAS  Google Scholar 

  • Deakin JFW, Simpson MDC (1997) A two-process theory of schizophrenia: evidence from studies in post-mortem brain. J Psychiatry Research 31:277–295

    Article  CAS  Google Scholar 

  • Deakin JFW, Simpson MDC, Slater P, Hellewell JSE (1997) Familial and developmental abnormalities of front lobe function and neuro chemistry in schizophrenia. J Psychopharmacol 11:133–142

    Article  PubMed  CAS  Google Scholar 

  • DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R (1997) Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res 74:129–140

    Article  Google Scholar 

  • Dwork AJ (1997) Postmortem studies of the hippocampal formation in schizophrenia. Schizophr Bull 23:385–402

    PubMed  CAS  Google Scholar 

  • Eastwood SL, McDonald B, Burnet PW, Beckwith JP, Kerwin RW, Harrison PJ (1995) Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluRl and GluR2 in medial temporal lobe neurons in schizophrenia. Brain Res Mol Brain Res 29:211–223

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, Kerwin RW, Harrison PJ (1997) Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psychiatry 41:636–43

    Article  PubMed  CAS  Google Scholar 

  • Falkai P, Bogerts B, Schneider T, Greve B, Pfeiffer U, Pilz K, Gonsiorzcyk C, Majtenyi C (1995) Ovary I Disturbed planum temporale asymmetry in schizophrenia. A quantitative post-mortem study. Schizophr Res 14:161–176

    Google Scholar 

  • Gabrowska VS, Mitchell A, Deakin JFW, Lewis SW, Burns A (1999) The clinical basis of cognitive impairment in elderly patients with schizophrenia. Schizophr Res, in press

    Google Scholar 

  • Gattaz WF, Schmitt A, Maras A (1995) Increased platelet phospholipase A2 activity in schizophrenia. Schizophr Res 16:1–6

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, Gur RC, Powchik P, Davidson M, Gabriel SM, Haroutunian V, Harvey PD, Davis KL (1995) Somatostatin and NPY deficits in schizophrenic cortex. Schizophr Res 15:26

    Google Scholar 

  • Harrison PJ, Eastwood SL (1998) Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 352:1669–1673

    Article  PubMed  CAS  Google Scholar 

  • Harvey I, Persaud R, Ron MA, Baker G, Murray RM (1994) Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls. Psychol Med 24:689–699

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Nishino N, Nakai H, Tanaka C (1991) Increase in serotonin 5-HT1A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia. Life Sciences 48:355–363

    Article  PubMed  CAS  Google Scholar 

  • Heckert M, Rottger S, Becker CM (1998) The NMDA receptor subunit NR2B of neonatal rat brain: complex formation and enrichment in axonal growth cones. Europ J Neurosci 10: 1553–1562

    Article  Google Scholar 

  • Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Cooper SJ, Herron BM, Crow TJ (1998a) Anomalies of cerebral asymmetry in schizophrenia interact with gender and age of onset: a post-mortem study. Schizophr Res 34:13–25

    Article  PubMed  CAS  Google Scholar 

  • Highley JR, Esiri MM, McDonald B, Cooper SJ, Crow TJ (1998b) Temporal-lobe length is reduced, and gyral folding is increased inschizophrenia: a post-mortem study. Schizophr Res 34:1–12

    Article  PubMed  CAS  Google Scholar 

  • Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J, Hu L, Boulianne GL, Luo Z, Trimble WS (1997) Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78:99–110

    Article  PubMed  CAS  Google Scholar 

  • Horrobin DF, Manku MS, Hillman H, Iain A, Glen M (1991) Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry 30:795–805

    Article  PubMed  CAS  Google Scholar 

  • Humphries C, Mortimer A, Hirsch S, De Belleroche J (1996) NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia. NeuroReport 7:2051–2055

    Article  PubMed  CAS  Google Scholar 

  • Huntsman MM, Tran BV, Potkin SG, Bunney WE Jr, Jones EG (1998) Altered ratios of alternatively spliced long and short gamma2 subunit RNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proceedings of the National Academy of Sciences, USA 95:15066–15071

    Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in Schizophrenics. J Neural Transmission 65:303–326

    Article  CAS  Google Scholar 

  • Joyce JN, Shane A, Lexow N, Winokur A, Casanova MF, Kleinman JE (1993) Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics. Neuropsy-chopharmacology 8:315–336

    CAS  Google Scholar 

  • Krimer LS, Herman MM, Saunders RC, Boyd JC, Hyde TM, Carter JM, Kleinman JE, Weinberger DR (1997) A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cerebral Cortex 7:732–739

    Article  PubMed  CAS  Google Scholar 

  • Kwon JS, McCarley RW, Hirayasu Y, Anderson JE, Fischer IA, Kikinis R, Jolesz FA, Shenton ME (1999) Left planum temporale volume reduction in schizophrenia. Arch Gen Psychiatry 56:142–148

    Article  PubMed  CAS  Google Scholar 

  • Longson D, Longson CM, Deakin JFW, Benes FM (1998) Specific increase in size of lamina II pyramidal cells in the entorhinal cortex in schizophrenia. Schizophr Res 29:87

    Article  Google Scholar 

  • Nair TR, Christensen JD, Kingsbury SJ, Kumar NG, Terry WM, Garver DL (1997) Progression of cerebroventricular enlargement and the subtyping of schizophrenia. Psychiatry Research 74:141–150

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Molecular Brain Research 56:207–217

    Article  PubMed  CAS  Google Scholar 

  • Pearlson GD, Barta PE, Powers RE, Menon RR, Richards SS, Aylward EH, Federman EB, Chase GA, Petty RG, Tien AY (1996) Ziskind-Somerfeld Research Award 1996. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biological Psychiatry 41:1–14

    Google Scholar 

  • Powchik P, Davidson M, Haroutunian V, Gabriel SM, Purohit DP, Perl DP, Harvey PD, Davis KL (1998) Postmortem studies in schizophrenia. Schizophr Bull 24:325–341

    PubMed  CAS  Google Scholar 

  • Rapoport JL, Giedd J, Kumra S, Jacobsen L, Smith A, Lee P, Nelson J, Hamburger S (1997) Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch Gen Psychiatry 54:897–903

    Google Scholar 

  • Roberts E (1972) A hypothesis suggesting that there is a defect in the GABA system in schizophrenia. Neurosci Res Program Bull 10:468–482

    PubMed  CAS  Google Scholar 

  • Schlaepfer TE, Harris GJ, Tien AY, Peng LW, Lee S, Federman EB, Chase GA, Barta PE, Pearlson GD (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151:842–848

    PubMed  CAS  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1998) Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comparative Neurology 392:402–412

    Article  CAS  Google Scholar 

  • Shapleske J, Rossell SL, Woodruff PWR, David AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Research and Brain Research Review 29:26–49

    Article  CAS  Google Scholar 

  • Simpson MDC, Lubman D, Slater P, Deakin JFW (1996) Autoradiography with [3H]8-OH-DPAT reveals increases in 5-HT1A receptors in ventral prefrontal cortex in schizophrenia. Biol Psychiatry 39:919–928

    Article  PubMed  CAS  Google Scholar 

  • Slater P, McConnell S, Dsouza SW, Barson AJ, Simpson MDC, Gilchrist AC (1992) Age-related changes in binding to excitatory amino acid uptake site in temporal cortex of human brain. Developmental Brain Research 65:157–160

    Article  PubMed  CAS  Google Scholar 

  • Slater P, McConnell SE, D’Souza SW, Barson AJ (1993) Postnatal changes in N-methyl-D-aspartate receptor binding and stimulation by glutamate and glycine of [3H]-MK-801 binding in human temporal cortex. Br J Pharmacol 108:1143–1149

    PubMed  CAS  Google Scholar 

  • Slater P, Doyle CA, Deakin JFW (1998) Abnormal persistence of cerebellar serotonin-1A receptors in schizophrenia suggests failure to regress in neonates. J Neural Transmission 105:305–315

    Article  CAS  Google Scholar 

  • Sokolov BP (1998) Expression of NMDAR1, GluRl, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochemistry 71:2454–2464

    Article  CAS  Google Scholar 

  • Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR (1990) Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322:789–794

    Article  PubMed  CAS  Google Scholar 

  • Taylor DC, Ounsted C (1971) Biological mechanisms influencing the outcome of seizures in response to fever. Epilepsia 12:33–45

    Article  PubMed  CAS  Google Scholar 

  • Weickert CS, Kleinman JE (1998) The neuroanatomy and neurochemistry of schizophrenia. Psychiatr Clin North Am 21:57–75

    Article  PubMed  CAS  Google Scholar 

  • Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154:1013–1015

    PubMed  CAS  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proceedings of the National Academy of Science, USA 95:5341–5346

    Google Scholar 

  • Woodruff PWR, Wright IC, Bullmore ET, Brammer M, Howard RJ, Williams SC, Shapleske J, Rossell S, David, AS, McGuire PK, Murray RM (1997) Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study. Am J Psychiatry 154:1676–1682

    PubMed  CAS  Google Scholar 

  • Zaidel DW, Esiri MM, Harrison PJ (1997) Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 154:812–818

    PubMed  CAS  Google Scholar 

  • Zipursky RB, Marsh L, Lim KO, Dement S, Shear PK, Sullivan EV, Murphy GM, Csernansky JG, Pfefferbaum A Volumetric MRI assessment of temporal lobe structures in schizophrenia. Biological Psychiatry 35:501–516

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Deakin, J.F.W. (1999). Outstanding Issues in Neuropathology and Neurochemistry of Schizophrenia. In: Gattaz, W.F., Häfner, H. (eds) Search for the Causes of Schizophrenia. Steinkopff. https://doi.org/10.1007/978-3-642-47076-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47076-9_20

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-47078-3

  • Online ISBN: 978-3-642-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics