Skip to main content

Efficient Nonparametric Smoothing in High Dimensions Using Interactive Graphical Techniques

  • Conference paper
Compstat

Abstract

Smoothing techniques are used to reduce the variability of point clouds. There is great interest not only among applied statisticians but also among applied workers in biostatistics, economics and engineering to model the data in a nonparametric fashion. The benefits of this more flexible modeling come at the cost of greater computation, especially in high dimensions. In this paper several possibilities of smoothing in high dimensions are described using additive models. The algorithms for solving the nonparametric smoothing problems are based on WARPing, i.e. Weighted Averaging using Rounded Points. Interactive graphical techniques are a conditio sine qua non for tuning and checking the structure of lower dimensional projections of the data and of smooths produced by the algorithms. Applications of the WARPing technique to a side impact study are shown by smoothing in Projection-Pursuit-type models using Average Derivative Estimation.

This research was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Becker, R.A. and Chambers, J.M. (1984). S.: An Interactive Environment for Data Analysis and Graphics. Wadsworth, Belmont.

    Google Scholar 

  • Breiman, L.; Friedman, J.; Olshen, R. and Stone, C.J. (1984). Classification and Regression Trees. Wadsworth, Belmont.

    MATH  Google Scholar 

  • Breiman, L. and Friedman, J. (1985). Estimating Optimal Transformations for Multiple Regression and Correlation (with discussion). J.Amer.Stat.Assoc. 80, 580–619.

    Article  MathSciNet  MATH  Google Scholar 

  • Caussinus, H. (1986). Models and Uses of Principal Component Analysis. Proc. Multidimensional Data Analysis, Cambridge, DSWO Press.

    Google Scholar 

  • Caussinus, H. (1987). Discussion of “What is Projection Pursuit ?” by Jones, M.C. and Sibson, R. J.Royal Statist. Soc.(A), 150, 26.

    Google Scholar 

  • Chambers, J.M. (1986). Computing Environments for Quantitative Applications. ATT Bell Labs Stat. Research Reports 17.

    Google Scholar 

  • Friedman, J. and Stuetzle, W. (1981). Projection Pursuit Regression. J.Amer.Stat.Ass 76, 817–823.

    Article  MathSciNet  Google Scholar 

  • Friedman, J. and Stuetzle, W. (1982). Smoothing of Scatterplots. Tech. Report Orion 8. Dept. Statistics, Stanford University.

    Google Scholar 

  • Hardie, W. (1988a). Interactive Smoothing Techniques, in: Proceedings of the Interface Conference, 1988, Reston Virginia, E. Wegman, Ed.

    Google Scholar 

  • Hardie, W. (1988b). Applied Nonparametric Regression. Cambridge University Press, to appear.

    Google Scholar 

  • Hardie, W. and Bowman A. (1988). Bootstrapping in Nonparametric Regression: Local Adaptive Smoothing and Confidence Bands. J. Amer. Statist. Assoc, 88, 102–110.

    Article  Google Scholar 

  • Hardie, W.; Hall, P. and Marron, J.S. (1988). How Far are Automatically Chosen Regression Smoothing Parameters from Their Optimum ? (with discussion). J. Amer. Statist. Assoc, 88, 86–101.

    Article  Google Scholar 

  • Hardie, W. and Scott, D.W. (1988). Smoothing in Low and High Dimensions by Weighted Averaging using Rounded Points. Statistical Science, submitted.

    Google Scholar 

  • Hardie, W. and Stoker, T. (1988). Investigating Smooth Multiple Regression by the Method of Average Derivatives. J. Amer. Statist. Assoc, submitted.

    Google Scholar 

  • Hastie, T. and Tibshirani, R. (1986). Generalized Additive Models. Statistical

    Google Scholar 

  • Heckman, N. (1986). Spline Smoothing in a Partly Linear Model. J.Royal Statist. Soc.(B), 48, 244–248.

    MathSciNet  MATH  Google Scholar 

  • Huber, P.J. (1985). Projection Pursuit (with discussion). Ann. Statist., 18, 485–875.

    Google Scholar 

  • Ibragimov, I.A. and Khasm’insksii, R.Z. (1981). Asymptotic Quality Boundaries of Regression Estimation in L p . Zap. Nauch. Sem. Lomi., 97, 88–101.

    Google Scholar 

  • Jones, M.C. and Sibson, R. (1987). What is Projection Pursuit ? (with discussion). J.Royal Statist. Soc.(A), 150, 1–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Kallieris, D.; Mattern, R. and Hardie, W. (1986). Belastbarkeitsgrenye und Verletzungsmechanik des angegurteten PKW-Insassen beim Seitaufprall. Phase II: Ansätze zur Verletzungsprädiktion. FAT Schriftenreihe 60, Forschungsvereinigung Automobiltechnik e.V. (FAT).

    Google Scholar 

  • McDonald, J. and Pederson, J. (1986). Computing Environments for Data Analysis, Part 3: Programming Environments. Laboratory for Computational Statistics, Stanford Technical Report 24-

    Google Scholar 

  • Müller, H.G. (1987). Weighted Local Regression and Kernel Methods for Non-parametric Curve Fitting. J. Amer. Statist. Assoc, 82, 281–288.

    Article  Google Scholar 

  • Oldford, R.W. and Peters, S.C. (1985). DINDE: Towards more Statistically Sophisticated Software. MIT, Technical Report 55.

    Google Scholar 

  • Rice, J.A. (1986). Convergence Rates for Partially Splined Models. Statistics and Probability Letters, 4, 203–208.

    Google Scholar 

  • Scott, D.W. (1986). Data Analysis in 3 and 4 Dimensions with Nonparametric Density Estimation, in: Statistical Image Processing, E. Wegman and D. DePriest, eds., Marcel Dekker, New York, 291–805.

    Google Scholar 

  • Scott, D.W. and Terrell, G.R. (1987). Biased and Unbiased Crossvalidation in Density Estimation. J. Amer. Statist. Assoc, 82, 1131–1146.

    Google Scholar 

  • Silverman, B.W. (1984). Spline Smoothing: The equivalent Variable Kernel Method. Ann. Statist, 12, 898–916.

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.

    MATH  Google Scholar 

  • Stone, C.J. (1982). Optimal Global Rates of Convergence for Nonparametric Regression. Ann.Statist., 10, 1040–1058.

    Article  MathSciNet  MATH  Google Scholar 

  • XploRe (1987). XploRe — a computing environment for eXploratory Regression and density smoothing. Wirtschaftstheorie II, Universität D-5800 Bonn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Physica-Verlag Heidelberg

About this paper

Cite this paper

Härdle, W. (1988). Efficient Nonparametric Smoothing in High Dimensions Using Interactive Graphical Techniques. In: Edwards, D., Raun, N.E. (eds) Compstat. Physica-Verlag HD. https://doi.org/10.1007/978-3-642-46900-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46900-8_2

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-7908-0411-9

  • Online ISBN: 978-3-642-46900-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics