Skip to main content

Parallel Linear Algebra in Statistical Computations

  • Conference paper
Compstat

Abstract

The main problem in parallel computation is to get a number of computers to cooperate in solving a single problem. The word “single” is necessary here to exclude the case of processors in a system working on unrelated problems. Ideally we should like to take a problem that requires time T to solve on a single processor and solve it in time T/p on a system consisting of p processors. We say that a system is efficient in proportion as it achieves this goal.

This work was supported in part by the Air Force Office of Sponsored Research under grant AFOSR-82–0078.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. S. Almas. Overview of parallel computing. Parallel Compting, 2:191–203, 1985.

    Article  Google Scholar 

  2. M. Annoratone, E. Arnould, T. Gross, H. T. Kung, O. Menzicioglu, and J. A. Webb. The WARP computer: architecture, implementation, and performance. IEEE Transaction on Computers, C-36:1523–1538, 1987.

    Article  Google Scholar 

  3. J. L. Barlow and I. C. F. Ipsen. Scaled Givens rotations for the solution of linear least squares problems on systolic arrays. SIAM Journal on Scientific and Statistical Computing, 8:716–734, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bischof and C. Van Loan. The WY representation for products of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 8:s2–s13, 1987.

    Article  Google Scholar 

  5. A. Bojanczyk and R. P. Brent. Parallel solution of certain toeplitz least-squares problems. Linear Algebra and Its Applications, 77:43–60, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Brass and G. S. Pawley. Two and three dimensional FFTs on highly parallel compters. Parallel Computing, 3:167–184, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. Jack J. Dongarra, Jeremy Du Croz, , Iain Duff, and Sven Hammarling. A proposal for a set of level 3 basic linear algebra subprograms. SIGNUM Newsletter, 22:2–14, 1987.

    Article  Google Scholar 

  8. M. Flynn. Very high speed computing. Proceedings of the IEEE, 1901–1909, 1966.

    Google Scholar 

  9. G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix algorithms on a hypercube I: matrix multiplication. Parallel Computing, 4:17–31, 1987.

    Article  MATH  Google Scholar 

  10. W. M. Gentleman. Using the Harmony Operating System. Technical Report ERB-966, Natonal Research Council of Canada, 1985.

    Google Scholar 

  11. A. George, M. T. Heath, J. Liu, and E. NG. Sparse cholesky factorization on a local-memory multiprocessor. SIAM Journal on Scientific and Statiscal Computing, 9:327–340, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  12. Alan George and Eleanor Chu. Gaussian Elimination with Partial Pivoting and Load Balancing on a Multiprocessor. Technical Report ORNL/TM-10323, Mathematical Sciences Section, Oak Ridge National Laboratory, 1987.

    Google Scholar 

  13. Carlo Ghezzi. Concurrency in programming languages: a survey. Parallel Computing, 2:224–241, 1985.

    Article  Google Scholar 

  14. L. Guangye and T. F. Coleman. A parallel triangular solver for a distributed memory multiprocessor. SIAM Journal on Scientific and Statistical Computing, 9:485–502, 1988.

    Article  MATH  Google Scholar 

  15. J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of parallel methods for a 1024-processor hypercube. SIAM Journal on Scientific and Statistical Computing, 9:, 1988. To appear in July.

    Google Scholar 

  16. R. W. Hockney. MIMD computing in the USA—1984. Parallel Computing, 3:119–136, 1985.

    Article  MathSciNet  Google Scholar 

  17. R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger Ltd., Bristol, 1981.

    MATH  Google Scholar 

  18. K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing. McGraw-Hill, New York, 1984.

    MATH  Google Scholar 

  19. R. Karp and R. Miller. Properties of a model for parallel computation: determinacy, termination, queuing. SIAM Journal on Applied Mathematics, 14:1390–1411, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. T. Kung. Why systolic architectures? IEEE Computer, 15:37–46, 1982.

    Article  Google Scholar 

  21. F. T. Luk. A triangular processor array for computing singular values. Linear Algebra and Its Applications, 77:259–274, 1986.

    Article  MATH  Google Scholar 

  22. W. Oed and O. Lange. Modelling, measurement, and simulation of memory interference in the CRAY XM-P. Parallel Computing, 3:343–358, 1986.

    Article  Google Scholar 

  23. D. P. O’Leary, Roger Pierson, G. W. Stewart, and Mark Wieser. The Maryland CRAB; A Module for Building Parallel Computers. Technical Report TR-1660, Department of Computer Science, University of Maryland, 1986.

    Google Scholar 

  24. D. P. C’Leary and G. W. Stewart. From determinacy to systaltic arrays. IEEE Transactions on Computers, C-36-.1355–1359, 1987.

    Article  Google Scholar 

  25. D. P. O’Leary, G. W. Stewart, and Robert van de Geijn. DOMINO; A Message Passing Environment for Parallel Computation. TR-1648, University of Maryland, Computer Science, 1986.

    Google Scholar 

  26. J. M. Ortega. Introduction to Parallel and Vector Computing. Plenum Press, New York, 1988.

    Google Scholar 

  27. C. Rieger. Zmob: hardware from a user’s viewpoint. In Proceedings of the IEEE Computer Society Conference on Pettern Recognition and Image Processing, pages 399–408, 1981.

    Google Scholar 

  28. C. Seitz. The cosmic cube. Communications of the Association for Computing Machinery, 28:22–33, 1985.

    Article  Google Scholar 

  29. G. W. Stewart. A Jacobi-like algorithm for computing the Schur decomposition of a non-Hermitian matrix. SIAM Journal on Scientific and Statistical Computing, 28:853–864, 1985.

    Article  Google Scholar 

  30. Robert A. van de Geijn. Implementing the QR-Algorithm on an Array of Processors. Technical Report 1897, Department of Computer Science, University of Maryland, 1987.

    Google Scholar 

  31. Pen-Chung Yew, Niau-Feng Tzeng, and D. H. Lawrie. Distributing hot-spot addressing in large scale multiprocessors. IEEE Transactions on Computers, C-36:338–395, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Physica-Verlag Heidelberg

About this paper

Cite this paper

Stewart, G.W. (1988). Parallel Linear Algebra in Statistical Computations. In: Edwards, D., Raun, N.E. (eds) Compstat. Physica-Verlag HD. https://doi.org/10.1007/978-3-642-46900-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46900-8_1

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-7908-0411-9

  • Online ISBN: 978-3-642-46900-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics