The Idea of a Potential Energy Surface

  • Brian T. Sutcliffe
Conference paper
Part of the Lecture Notes in Chemistry book series (LNC, volume 71)


The idea that the proper way to treat molecules in quantum mechanics is to try to separate the electronic and nuclear motions as far as possible, dates from the very earliest days of the subject. The genesis of the idea is usually attributed to Born and Oppenheimer [1], but it is an idea that was in the air at the time, for the earliest papers in which the idea is used, predate the publication of their paper. The physical picture that informs the attempted separation is one well known and widely used even in classical mechanics, namely division of the problem into a set of rapidly moving particles, here electrons and a much more slowly moving set, here the nuclei. Experience is that it is wise to try and separate such incommensurate motions both to calculate efficiently and to get a useful physical picture.


Potential Energy Surface Internuclear Distance Internal Motion Identical Particle Orientation Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Born and J. R. Oppenheimer, Ann. der Phys., 1927 84, 457.CrossRefGoogle Scholar
  2. [2]
    C. Eckart, Phys. Rev., 1935, 47, 552.CrossRefGoogle Scholar
  3. [3]
    G. Hunter, Int. J. Quant. Chem., 1975, 9, 237.CrossRefGoogle Scholar
  4. [4]
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford U. P., 1955, Appendix 8.Google Scholar
  5. [5]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV, Analysis of Operators, Academic Press, New York, 1978.Google Scholar
  6. [6]
    W. Thirring, A Course in Mathematical Physics, 3, Quantum Mechanics of Atoms and Molecules, tr. E. M. Harrell, Springer-Ver lag, New York, 1981.Google Scholar
  7. [7]
    G. M. Zhislin, Trudy. Most Mat Obsc., 1960, 9, 82.Google Scholar
  8. [8]
    J. Uchiyama, Pub. Res. Inst. Math. Sci. Kyoto., 1966, A 2, 117.Google Scholar
  9. [9]
    B. Simon, Quantum Mechanics for Hamiltonians defined as quadratic forms, Princeton U. P., 1971.Google Scholar
  10. [10]
    G. M. Zhislin, Theor. Math. Phys., 1971, 7, 571.CrossRefGoogle Scholar
  11. [11]
    M. B. Ruskai and J. P. Solovej in Schrödinger Operators, Lecture Notes in Physics 403, ed E. Balslev Springer-Verlag, Berlin, 1992, 153.Google Scholar
  12. [12]
    M. B. Ruskai, Ann. Inst. Henri Poincaré, 1990, 52, 397.Google Scholar
  13. [13]
    M. B. Ruskai, Commun. Math. Phys., 1991, 137, 553.CrossRefGoogle Scholar
  14. [14]
    B. Simon, Helv. Phys. Acta., 1970, 43, 607.Google Scholar
  15. [15]
    S. A. Vugal’ter and G. M. Zhislin, Theor. Math. Phys., 1977, 32, 602.CrossRefGoogle Scholar
  16. [16]
    W. D. Evans, R. T Lewis and Y. Saito, Phil. Trans. Roy. Soc. Lond. A, 1992, 338, 113.CrossRefGoogle Scholar
  17. [17]
    J.-M. Richard, J. Fröhlich, G-M. Graf and M. Seifert, Phys. Rev. Letts., 71, 1993, 1332.CrossRefGoogle Scholar
  18. [18]
    B. T. Sutcliffe, J. Chem. Soc., Faraday Transactions, 89, 1993, 2321.Google Scholar
  19. [19]
    B. T. Sutcliffe in Conceptual Trends in Quantum Chemistry, Eds E. S. Kryachko and J. L. Calais, Kluwer Academic, Dordrecht, 1994, p 53.Google Scholar
  20. [20]
    B. T. Sutcliffe in Methods of Computational Chemistry Vol. 4, ed. S. Wilson, Plenum Press, New York and London 1991, p. 33.Google Scholar
  21. [21]
    J. K. G. Watson, Mol. Phys., 1968, 15, 479.CrossRefGoogle Scholar
  22. [22]
    D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed. Clarendon Press, Oxford 1968.Google Scholar
  23. [23]
    L. C. Biedenharn and J. C. Louek, Angular Momentum in Quantum Physics, Addison-Wesley, Reading, Mass. 1982.Google Scholar
  24. [24]
    J. M. Brown and B. J. Howard, Mol. Phys., 1976, 31, 1517.CrossRefGoogle Scholar
  25. [25]
    R. N. Zare, Angular Momentum, Wiley, New York, 1988 Chap. 3. 4Google Scholar
  26. [26]
    G. Ezra, Symmetry properties of molecules, Lecture Notes in Chemistry 28, Springer-Verlag, Berlin, 1982.CrossRefGoogle Scholar
  27. [27]
    J. C. Louck, J. Mol. Spec., 1976, 61, 107.CrossRefGoogle Scholar
  28. [28]
    B. Schutz, Geometrical methods of mathematical physics, C. U. P., Cambridge, 1980.Google Scholar
  29. [29]
    B. T. Sutcliffe in Theoretical models of chemical bonding, Pt. 1 ed. Z Maksic, Springer-Verlag Berlin, 1990, p. 1.Google Scholar
  30. [30]
    J. Czub and L. Wolniewicz, Mol. Phys., 1978, 36, 1301.CrossRefGoogle Scholar
  31. [31]
    F. T. Smith, Phys. Rev. Letts., 1980, 45, 1157.CrossRefGoogle Scholar
  32. [32]
    A. Schmelzer and J. N. Murreil, Int J. Quant. Chem, 1985, 28, 288.CrossRefGoogle Scholar
  33. [33]
    M. A. Collins and D. F. Parsons, J. Chem. Phys., 1993, 99, 6756.CrossRefGoogle Scholar
  34. [35]
    J. O. Hirschfelder and E. Wigner, Proc. Nat. Acad. Sci., 1935, 21, 113.CrossRefGoogle Scholar
  35. [36]
    B. Buck, L. C. Biedenharn and R. Y. Cusson, Nucl. Phys, 1979, A 317, 215.Google Scholar
  36. [37]
    J. D. Louck and H. W. Galbraith, Rev. Mod. Phys., 1976, 48, 69.CrossRefGoogle Scholar
  37. [38]
    R. S. Berry, Rev. Mod. Phys., 1960, 32, 447.CrossRefGoogle Scholar
  38. [39]
    M. S. Reeves and E. R. Davidson, J. Chem. Phys, 1991, 95, 6651.CrossRefGoogle Scholar
  39. [40]
    H. C. Longuet-Higgins, Molec. Phys., 1963, 6, 445.CrossRefGoogle Scholar
  40. [41]
    P. R. Bunker, Molecular Symmetry and Spectroscopy, Academic Press, London, 1979.Google Scholar
  41. [42]
    I. G. Kaplan, Symmetry of Many-Electron Systems, Academic Press, London, 1975.Google Scholar
  42. [43]
    J. Maruani and J Serre, Eds, Symmetries and Properties of Non-Rigid Molecules, Elsevier, Amsterdam, 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Brian T. Sutcliffe
    • 1
  1. 1.Deparment of ChemistryUniversity of YorkYorkEngland

Personalised recommendations