Relevance of DNA Repair to Carcinogenesis and Cancer Therapy

  • M. F. Rajewsky
  • J. Engelbergs
  • J. Thomale
  • T. Schweer
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 154)


DNA-reactive carcinogens and anticancer drugs induce many structurally distinct cytotoxic and potentially mutagenic DNA lesions. The capability of normal and malignant cells to recognize and repair different DNA lesions is an important variable influencing the risk of mutation and cancer as well as therapy resistance. Using monoclonal antibody-based immunoanalytical assays, very low amounts of defined carcinogen-DNA adducts can be quantified in bulk genomic DNA, individual genes, and in the nuclear DNA of single cells. The kinetics of DNA repair can thus be measured in a lesion-, gene-, and cell type-specific manner, and the DNA repair profiles of malignant cells can be monitored in individual patients. Even structurally very similar DNA lesions may be repaired with extremely different efficiency. The miscoding DNA alkylation products O6-methylguanine (O6-MeGua) and O6-ethylguanine (O6-EtGua), for example, differ only by one CH2 group. These lesions are formed in DNA upon exposure to N-methyl-N-nitrosourea (MeNU) or N-ethyl-N-nitrosourea (EtNU), both of which induce mammary adenocarcinomas in female rats at high yield. Unrepaired O6-alkylguanines cause transition mutations via mispairing during DNA replication. O6-MeGua is repaired at a similar slow rate in transcribed (H-ras,β- actin) and inactive genes (IgE heavy chain; bulk DNA) of the target mammary epithelia (which express the repair protein O6-alkylguanine-DNA alkyltransferase at a very low level). O6-EtGua, however, via an alkyltransferase-independent mechanism, is excised ~20 times faster than O6-MeGua from the transcribed genes selectively. Correspondingly, G:C → A:T transitions arising from unrepaired O6-MeGua at the second nucleotide of codon 12 (GGA) of the H-ras gene are frequently found in MeNU-induced mammary tumors, but are absent in their EtNU-induced counterparts.


Base Excision Repair Cockayne Syndrome MGMT Activity Cancer Therapy Resistance Xeroderma Pigmen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altshuler KB, Hodes CS, Essigmann JM (1996) Intrachromosomal probes for mutagenesis by alkylated DNA bases replicated in mammalian cells: a comparison of the mutagenicities of 04-methylthymine and 06-methylguanine in cells with different DNA repair backgrounds. Chem Res Toxicol 9: 980 - 987PubMedCrossRefGoogle Scholar
  2. Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, Elliott M, Yu J, Ashley T, Arnheim N, Flavell RA, Liskay RM (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82: 309 - 319PubMedCrossRefGoogle Scholar
  3. Baylin SB (1997) Tying it all together: epigenetics, genetics, cell cycle, and cancer. Science 277: 1948 - 1949PubMedCrossRefGoogle Scholar
  4. Becker K, Gregel CM, Kaina B (1997) The DNA repair protein O6-methylguanine-DNA methyltransferase protects against skin tumor formation induced by antineoplastic chloroethylnitrosourea. Cancer Res 57: 3335 - 3338PubMedGoogle Scholar
  5. Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231: 11 - 30PubMedCrossRefGoogle Scholar
  6. Bohr VA (1991) Gene specific DNA repair. Carcinogenesis 12: 1983 - 1992PubMedCrossRefGoogle Scholar
  7. Bohr VA (1995) DNA repair fine structure and its relation to genomic instability. Carcinogenesis 16: 2885 - 2892PubMedCrossRefGoogle Scholar
  8. Burt RK, Poirier MC, Link CJ Jr, Bohr VA (1991) Antineoplastic drug resistance and DNA repair. Ann Oncol 2: 325 - 334PubMedGoogle Scholar
  9. Buschfort C, Müller MR, Seeber S, Rajewsky MF, Thomale J (1997) DNA excision repair profiles of normal and leukemic human lymphocytes: functional analysis at the single-cell level. Cancer Res 57: 651 - 658PubMedGoogle Scholar
  10. Chaney SG, Sancar A (1996) DNA repair: enzymatic mechanisms and relevance to drug response. J Nati Cancer Inst 88: 1346 - 1360CrossRefGoogle Scholar
  11. Chen FY, Harris LC, Remack JS, Brent TP (1997) Cytoplasmic sequestration of an 06methylguanine-DNA methyltransferase enhancer binding protein in DNA repair-deficient human cells. Proc Natl Acad Sci USA 94: 4348 - 4353PubMedCrossRefGoogle Scholar
  12. Chu G (1997) Double strand break repair. J Biol Chem 171: 24097 - 24100CrossRefGoogle Scholar
  13. Colvin M, Chabner BA (1990) Alkylating agents. In: Chabner BA, Collins JM (eds) Cancer chemotherapy: principles and practice. Lippincott, Philadelphia, pp 276 - 314Google Scholar
  14. Costello JF, Berger MS, Huang H-JS, Cavenee WK (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56: 2405 - 2410PubMedGoogle Scholar
  15. Crone TM, Goodtzova K, Edara S, Pegg AE (1994) Mutations in human 06-alkylguanineDNA alkyltransferase imparting resistance to 06-benzylguanine. Cancer Res 54: 6221 - 6227PubMedGoogle Scholar
  16. Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272: 25409 - 25412PubMedCrossRefGoogle Scholar
  17. Davis BM, Reese JS, Ko ON, Lee K, Schupp JE, Gerson SL (1997) Selection for G156A 06methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with 06-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 57: 5093 - 5099PubMedGoogle Scholar
  18. De Vries A, van Steeg H (1996) Xpa knockout mice. Semin Cancer Biol 7:229-240PubMedCrossRefGoogle Scholar
  19. De Wind N, Dekker M, Berns A, Radman M, to Riele H (1995) Inactivation of the mouse Msh2 gene results in postreplicational mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to tumorigenesis. Cell 82: 321 - 330PubMedCrossRefGoogle Scholar
  20. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63: 915 - 948PubMedCrossRefGoogle Scholar
  21. Denissenko MF, Pao A, Tang M-S, Pfeifer GP (1996) Preferential formation of ben-zo(a)pyrene adducts at lung cancer mutational hotspots in P53. Science 274: 430 - 432PubMedCrossRefGoogle Scholar
  22. Dipple A (1995) DNA adducts of chemical carcinogens. Carcinogenesis 16: 437 - 441PubMedCrossRefGoogle Scholar
  23. Dipple A, Chau Cheng S, Bigger AH (1990) Polycyclic aromatic hydrocarbon carcinogens. In: Pariza M (ed) Mutagens and carcinogens in the diet. Wiley-Liss, New York, pp 109 - 127Google Scholar
  24. Dogliotti E, Fortini P, Pascucci B (1997) Mutagenesis of abasic sites. In Hickson ID (ed) Base excision repair of DNA damage. Landes Bioscience, Austin, pp 81-101Google Scholar
  25. Donehower LA (1996) The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol 7: 269 - 278PubMedCrossRefGoogle Scholar
  26. Duckett DR, Drummond JT, Murchie AIH, Reardon JT, Sancar A, Lilley DMJ, Modrich P (1996) Human MutSa recognizes damaged DNA base pairs containing 06-methylguanine, 04-methylthymine, or the cisplatin d(GpG) adduct. Proc Natl Acad Sci USA 93: 64436447Google Scholar
  27. Dumenco LL, Allay E, Norton K, Gerson SL (1993) The prevention of thymic lymphomas in transgenic mice by human 06-alkylguanine-DNA alkytransferase. Science 259: 219 - 222PubMedCrossRefGoogle Scholar
  28. Edelman W, Cohen P, Kane M, Lan K, Morrow B, Bennet S, Umar A, Kunkel T, Cattoretti G, Chaganti R, Pollard J, Kolodner R, Kucherlapati R (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85: 1125 - 1134CrossRefGoogle Scholar
  29. Eisenbrand G, Müller N, Denkel E, Sterzel W (1986) DNA adducts and DNA damage by antineoplastic and carcinogenic N-nitroso compounds. J Cancer Res Clin Oncol 112: 196 - 204PubMedCrossRefGoogle Scholar
  30. Ellis NA, Groden J, Ye T-Z, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83: 655 - 666PubMedCrossRefGoogle Scholar
  31. Engelbergs J, Thomale J, Galhoff A, Rajewsky MF (1998) Fast repair of 06-ethylguanine, but not 06-methylguanine, in transcribed genes prevents mutation of H-ras in rat mammary tumorigenesis induced by ethylnitrosourea in place of methylnitrosourea. Proc Natl Acad Sci USA 95: 1635 - 1640PubMedCrossRefGoogle Scholar
  32. Engelward BP, Weeda G, Wyatt MD, Broekhof JL, De Wit J, Donker I, Allan JM, Gold B, Hoeijmakers JHL, Samson LD (1997) Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci USA 94: 13087 - 13092PubMedCrossRefGoogle Scholar
  33. Epstein RJ (1990) Drug-induced DNA damage and tumor chemosensitivity. J Clin Oncol 8: 2062 - 2084PubMedGoogle Scholar
  34. Fink D, Zheng H, Nebel S, Norris PS, Aebi S, Lin T-Z, Nehmé A, Christen RD, Haas M, MacLeod CL, Howell SB (1997) In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res 57: 1841 - 1845PubMedGoogle Scholar
  35. Fishel R, Wilson T (1997) MutS homologs in mammalian cells. Curr Opin Genet Dev 7: 105113Google Scholar
  36. Fong LYY, Lau K-M, Huebner K, Magee PN (1997) Induction of esophageal tumors in zinc-deficient rats by single low doses of N-nitrosomethylbenzylamine (NMBA): analysis of cell proliferation, and mutations in H-ras and p53 genes. Carcinogenesis 18: 1477 - 1484PubMedCrossRefGoogle Scholar
  37. Friedberg EC (1996) Relationships between DNA repair and transcription. Annu Rev Biochem 65: 15 - 42PubMedCrossRefGoogle Scholar
  38. Friedberg EC, Walker GC, Siede W (1995) DNA Repair and mutagenesis. ASM, Washington DCGoogle Scholar
  39. Gerson SL, Trey JE, Miller K, Berger NA (1986) Comparison of 06-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis 7: 745 - 749PubMedCrossRefGoogle Scholar
  40. Gonzalgo ML, Jones PA (1997) Mutagenic and epigenetic effects of DNA methylation. Mutat Res 386: 107 - 118PubMedCrossRefGoogle Scholar
  41. Goth R, Rajewsky MF (1974) Persistence of 06-ethylguanine in rat-brain DNA: correlation with nervous system-specific carcinogenesis by ethylnitrosourea. Proc Natl Acad Sci USA 71: 639 - 643PubMedCrossRefGoogle Scholar
  42. Gunz D, Hess MT, Naegeli H (1996) Recognition of DNA adducts by human nucleotide excision repair. J Biol Chem 271: 25089 - 25098PubMedCrossRefGoogle Scholar
  43. Hanawalt PC (1996) Role of transcription-coupled DNA repair in susceptibility to environmental carcinogenesis. Environ Health Perspect 104 Suppl 3: 547 - 551Google Scholar
  44. Hang B, Singer B, Margison GP, Elder RH (1997) Targeted deletion of alkylpurine-DNA-Nglycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine. Proc Natl Acad Sci USA 94: 12869 - 12874PubMedCrossRefGoogle Scholar
  45. Harris CC (1989) Interindividual variation among humans in carcinogen metabolism, DNA adduct formation and DNA repair. Carcinogenesis 10: 1536 - 1566CrossRefGoogle Scholar
  46. Heppner GH, Miller FR (1998) The cellular basis of tumor progression. Int Rev Cytol 177: 1 - 56PubMedCrossRefGoogle Scholar
  47. Hickson ID (ed) (1997) Base excision repair of DNA damage. Landes Bioscience, AustinGoogle Scholar
  48. Hoeijmakers JHJ, Bootsma D (1990) Molecular genetics of eukaryotic DNA excision repair. Cancer Cells 2: 311 - 320PubMedGoogle Scholar
  49. Huh N-H, Rajewsky MF (1988) Enzymatic elimination of 06-ethylguanine from the DNA of ethylnitrosourea-exposed normal and malignant rat brain cells grown under cell culture versus in vivo conditions. Int J Cancer 41: 76 - 766.CrossRefGoogle Scholar
  50. Karran P (1996) Microsatellite instability and DNA mismatch repair in human cancer. Semin Cancer Biol 7: 15 - 24PubMedCrossRefGoogle Scholar
  51. Karran P, Bignami M (1994) DNA damage tolerance, mismatch repair and genome instability. Bioessays 16: 833 - 839PubMedCrossRefGoogle Scholar
  52. Kass SU, Pruss D, Wolffe AP (1997) How does DNA methylation repress transcription? Trends Genet 13: 444 - 449PubMedCrossRefGoogle Scholar
  53. Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10: 238 - 247PubMedGoogle Scholar
  54. Kolodner RD (1997) DNA mismatch repair and cancer susceptibility. In: Fortner JG, Sharp PA (eds) Accomplishments in cancer research 1996. Lippincott - Raven, Philadelphia, pp 56 - 69Google Scholar
  55. Kraemer KH (1997) Sunlight and skin cancer: another link revealed. Proc Natl Acad Sci USA 94: 11 - 14PubMedCrossRefGoogle Scholar
  56. Krokan HE, Standal R, Slupphaug G (1997) DNA glycosylases in the base excision repair of DNA. Biochem J 325: 1 - 16PubMedGoogle Scholar
  57. Lee SM, Reid H, Elder RH, Thatcher N, Margison GP (1996) Inter-and intracellular heterogeneity of 06-alkylguanine-DNA alkyltransferase expression in human brain tumors: possible significance in nitrosourea therapy. Carcinogenesis 17: 637 - 641PubMedCrossRefGoogle Scholar
  58. Lengauer C, Kinzler KW, Vogelstein B (1997) DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci USA 94: 2545 - 2550PubMedCrossRefGoogle Scholar
  59. Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y (1988) Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem 57: 133 - 157PubMedCrossRefGoogle Scholar
  60. Link CJ Jr, Burt RK, Bohr VA (1991) Gene-specific repair of DNA damage induced by UV irradiation and cancer chemotherapeutics. Cancer Cells 3: 427 - 436PubMedGoogle Scholar
  61. Loeb LA (1996) Many mutations in cancers. Cancer Sur 28: 329 - 342Google Scholar
  62. Lutz WK (1990) Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis. Mutat Res 238: 287 - 295PubMedGoogle Scholar
  63. Maze R, Carney JP, Kelley MR, Glassner BJ, Williams DA, Samson L (1996) Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1,3-bis(chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent. Proc Natl Acad Sci USA 93: 206 - 210PubMedCrossRefGoogle Scholar
  64. Ménissier-de Murcia J, Niedergang CP, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94: 7303 - 7307Google Scholar
  65. Montesano R, Hall J, Wild CP (1992) Alkylating agents relating to carcinogenesis in man. In: Damato R, Slaga TJ, Farland WH, Henry C (eds) Relevance of animal studies to the evaluation of human cancer risk. Wiley-Liss, New York, pp 175 - 196Google Scholar
  66. Moritz T, Mackay W, Glassner BJ, Williams D, Samson L (1995) Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 55: 2608 - 2614PubMedGoogle Scholar
  67. Müller MR, Seiler F, Thomale J, Buschfort C, Rajewsky MF, Seeber S (1994) Capacity of individual chronic lymphatic leukemia lymphocytes and leukemic blast cells for repair of 06-ethylguanine in DNA: Relation to chemosensitivity in vitro and treatment outcome. Cancer Res 54: 4524-4531Google Scholar
  68. Murata-Kamiya N, Kamiya H, Kaji H, Kasai H (1997) Glyoxal, a major product of DNA oxidation, induces mutations at G:C sites on a shuttle vector plasmid replicated in mammalian cells. Nucleic Acids Res 25: 1897 - 1902PubMedCrossRefGoogle Scholar
  69. Naegeli HP (1994) Roadblocks and detours during DNA replication: mechanisms of muta-genesis in mammalian cells. Bioessays 16: 557 - 564PubMedCrossRefGoogle Scholar
  70. Nakane H, Takeuchi H, Yuba S, Saijo M, Nakatsu Y, Murai H, Nakatsuru Y, Ishikawa T, Hirota S, Kitamura Y, Kato Y, Tsunoda Y, Miyauchi H, Horio T, Tokunaga T, Matsunaga T, Nikaido O, Nishimune Y, Okada Y, Tanaka K (1995) High incidence of ultraviolet-Bor chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmento-sum group A gene. Nature 377: 165 - 168PubMedCrossRefGoogle Scholar
  71. Nakatsuru Y, Matsukuma S, Nemoto N, Sugano H, Sekiguchi M, Ishikawa T (1993) O6methylguanine-DNA methyltransferase protects against nitrosamine-induced hepatocarcinogenesis. Proc Natl Acad Sci USA 90: 6468 - 6472PubMedCrossRefGoogle Scholar
  72. Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong 0, Hsuan JJ, Wiebauer K, Jiricny J (1996) Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 271: 12767 - 12774PubMedCrossRefGoogle Scholar
  73. Oda H, Zhang S, Tsurutani N, Shimizu S, Nakatsuru Y, Aizawa S, Ishikawa T (1997) Loss of p53 is an early event in induction of brain tumors in mice by transplacental carcinogen exposure. Cancer Res 57: 646 - 650PubMedGoogle Scholar
  74. Pegg AE (1990) Mammalian 06-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogens and therapeutic agents. Cancer Res 50: 6119 - 6129PubMedGoogle Scholar
  75. Preuss I, Eberhagen I, Haas S, Eibl RH, Kaufmann M, von Minckwitz G, Kaina B (1995) 06methylguanine-DNA methyltransferase activity in breast and brain tumors. Int J Cancer 61: 321 - 326Google Scholar
  76. Prolla TA, Abuin A, Bradley A (1996) DNA mismatch repair deficient mice in cancer research. Semin Cancer Biol 7: 241 - 247PubMedCrossRefGoogle Scholar
  77. Rafferty JA, Hickson I, Chinnasamy N, Lashford LS, Margison GP, Dexter TM, Fairbairn LJ (1996) Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastasis Rev 15: 365 - 383PubMedCrossRefGoogle Scholar
  78. Rajewsky MF (1972) Proliferative parameters of mammalian cell systems and their role in tumor growth and carcinogenesis. Z Krebsforsch 79: 12 - 30Google Scholar
  79. Reese JS, Ko ON, Lee K, Liu L, Allay JA, Phillips WP, Gerson SL (1996) Retroviral transduction of a mutant MGMT into human CD34+ cells confers resistance to 06-benzylguanine plus BCNU. Proc Natl Acad Sci USA 93: 14088 - 14093PubMedCrossRefGoogle Scholar
  80. Sakumi K, Shiraishi A, Shimizu S, Tsuzuki T, Ishikawa T, Sekiguchi M (1997) Methylnitrosourea-induced tumorigenesis in MGMT gene knockout mice. Cancer Res 57:2415-2418 Sancar A (1996) DNA excision repair. Annu Rev Biochem 65: 43 - 81Google Scholar
  81. Sands AT, Abuin A, Sanchez A, Conti CJ, Bradley A (1995) High susceptibility to ultraviolet-induced carcinogensis in mice lacking XPC. Nature 377: 162 - 165PubMedCrossRefGoogle Scholar
  82. Sedgwick B (1997) Nitrosated peptides and polyamines as endogenous mutagens in 06-alkyguanine-DNA alkyltransferase deficient cells. Carcinogenesis 18: 1561 - 1567PubMedCrossRefGoogle Scholar
  83. Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biochem Sci 20: 391 - 397PubMedCrossRefGoogle Scholar
  84. Seiler F, Kirstein U, Eberle G, Hochleitner K, Rajewsky MF (1993) Quantification of specific DNA 0-alkylation products in individual cells by monoclonal antibodies and digital imaging of intensified nuclear fluorescence. Carcinogenesis 14: 1907 - 1913PubMedCrossRefGoogle Scholar
  85. Sies H (1986) Biochemistry of oxidative stress. Angew Chem [Int Ed] 25: 1058 - 1071CrossRefGoogle Scholar
  86. Singer B, Grunberger D (1983) Molecular biology of mutagens and carcinogens. Plenum, New YorkCrossRefGoogle Scholar
  87. Singer B, Hang B (1997) What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Chem Res Toxicol 10: 713 - 732PubMedCrossRefGoogle Scholar
  88. Singer B, Bodell WJ, Cleaver JE, Thomas GH, Rajewsky MF, Thon W (1978) Oxygens in DNA are main targets for ethylnitrosourea in normal and xeroderma pigmentosum fibroblasts and fetal rat brain cells. Nature 276: 85 - 88PubMedCrossRefGoogle Scholar
  89. Skovsgaard T, Nielsen D, Maare C, Wassermann K (1994) Cellular resistance to cancer chemotherapy. Int Rev Cytol 156: 77 - 157PubMedCrossRefGoogle Scholar
  90. Strauss BS (1977) Silent and multiple mutations in p53 and the question of the hyper-mutability of tumors. Carcinogenesis 18: 1445 - 1452CrossRefGoogle Scholar
  91. Sukumar S, Notario V, Martin-Zanka D, Barbacid M (1983) Induction of mammary carcinomas in rats by nitrosomethylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306: 658 - 661PubMedCrossRefGoogle Scholar
  92. Swenberg JA, Dyroff MC, Bedell MA, Popp JA, Huh N-H, Kirstein U, Rajewsky MF (1984) 04-ethyldeoxythymidine, but not 06-ethyldeoxyguanosine, accumulates in hepatocyte DNA of rats exposed continuously to diethylnitrosamine. Proc Natl Acad Sci USA 81: 1692 - 1695Google Scholar
  93. Thomale J, Huh N-H, Nehls P, Eberle G, Rajewsky MF (1990) Repair of 06-ethylguanine in DNA protects rat 208F cells from tumorigenic conversion by N-ethyl-N-nitrosourea. Proc Natl Acad Sci USA 87: 9883 - 9887PubMedCrossRefGoogle Scholar
  94. Thomale J, Hochleitner K, Rajewsky MF (1994 a) Differential formation and repair of the mutagenic DNA alkylation product 06-ethylguanine in transcribed and non-transcribed genes of the rat. J Biol Chem 269: 1681 - 1686Google Scholar
  95. Thomale J, Seiler F, Müller MR, Seeber S, Rajewsky MF (1994b) Repair of 06-alkylguanines in the nuclear DNA of human lymphocytes and leukaemic cells: analysis at the single-cell level. Br J Cancer 69: 698 - 705PubMedCrossRefGoogle Scholar
  96. Thomale J, Engelbergs J, Seiler F, Rajewsky MF (1996) Monoclonal antibody-based quantification and repair analysis of specific alkylation products in DNA. In: Pfeifer GP (ed) Technologies for detection of DNA damage and mutations. Plenum, New York, pp 87 - 101Google Scholar
  97. Tu Y, Bates S, Pfeifer GP (1997) Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells. J Biol Chem 272: 20747 - 20755PubMedCrossRefGoogle Scholar
  98. Umar A, Kunkel TA (1996) DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur J Biochem 238: 297 - 307PubMedCrossRefGoogle Scholar
  99. Ushijima T, Morimura K, Hosoya Y, Okonogi H, Tatematsu M, Sugimura T, Nagao M (1997) Establishment of methylation-sensitive-representational difference analysis and isolation of hypo-and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci USA 94: 2284 - 2289PubMedCrossRefGoogle Scholar
  100. Van der Horst GTJ, van Steeg H, Berg RJW, Morreau H, Seems RB, van Kreij CF, de Gruiji FR, Bootsma D, Hoeijmakers JHJ (1997) Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89: 425 - 435Google Scholar
  101. Von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, LondonGoogle Scholar
  102. Wahl GM, Linke SP, Paulson TG, Huang L-C (1997) Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Sury 29: 183 - 219Google Scholar
  103. Wellinger RE, Thoma F (1997) Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO J 16: 5046 - 5056PubMedCrossRefGoogle Scholar
  104. White A, Kibitel J, Garcia Y, Belanich M, Yarosh D, Wideroff J, Levin L, Held D, Fuchs A, Citron M (1997) 06-alkylguanine-DNA alkyltransferase in normal colon tissue and colon cancer. Oncol Res 9: 149 - 153Google Scholar
  105. Woloschak M, Yu A, Post KD (1997) Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinog 19: 221 - 224PubMedCrossRefGoogle Scholar
  106. Wood RD (1996) DNA repair in eukaryotes. Annu Rev Biochem 65: 135 - 167PubMedCrossRefGoogle Scholar
  107. Zeng-Rong N, Paterson J, Alpert L, Tsao M-S, Viallet J, Aloui-Jamali MA (1995) Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Res 55: 4760 - 4764PubMedGoogle Scholar
  108. Zingg J-M, Jones PA (1997) Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18: 869 - 882PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • M. F. Rajewsky
    • 1
  • J. Engelbergs
    • 1
  • J. Thomale
    • 1
  • T. Schweer
    • 1
  1. 1.Institute of Cell Biology (Cancer Research) [IFZ]University of Essen Medical School and West German Cancer Center EssenEssenGermany

Personalised recommendations