Skip to main content

DNA vaccination by somatic transgene immunization

  • Chapter
Gene Vaccination: Theory and Practice

Part of the book series: Principles and Practice ((PRINCIPLES))

  • 350 Accesses

Abstract

Possibly the most astonishing feature in vaccinology is the fact that vaccines have, and continue to be, developed on an empirical basis. The biotechnological revolution that took place in the eighties expanded the range of strategies and approaches for making novel vaccines, but while not establishing new principles for vaccinology [1] it acknowledged two factors: (a) effective and durable immunity can be achieved with suitable constituted non-infectious vaccines, and (b) the experience of infection is not required for inducing such an effect [2]. Although immunology as a science has made remarkable progress in elucidating the physiology and the molecular basis of the immune response, new vaccines are not developed at the pace needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zanetti M, E Sercarz, and J Salk (1987) The immunology of new generation vaccines. Immunol. Today 8: 18

    Google Scholar 

  2. Salk J, and M Zanetti (1989) Next step in the evolution of vaccinology. In Progress in Vaccinology, GP Ta;war Ed., Springer-Verlag, New York. p 451

    Chapter  Google Scholar 

  3. Tan EM, PH Schur, RI Carr, and HG Kunkel (1966) Deoxybonucleic acid ( DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest 45: 1732

    Google Scholar 

  4. Koffler D, RI Carr, V Agnello, T Fiezi, and HG Kunkel (1969) Antibodies to polynucleotides: distribution in human serums. Science 166: 1648

    Article  PubMed  CAS  Google Scholar 

  5. Pincus T, PH Schur, JA Rose, JL Decker, and N Talal (1969) Measurement of serum DNA-binding activity in systemic lupus erythematosus. N Engl J Med 281: 70

    Article  Google Scholar 

  6. Madaio MP, S Hodder, RS Schwartz, and BD Stollar (1984) Responsiveness of autoimmune and normal mice to nucleic acid antigens. J Immunol 132: 872

    PubMed  CAS  Google Scholar 

  7. Braun W, and M Nakano (1965) Influence of oligodeoxyribonucleotides on early events in antibody formation. Proc. Soc. Exp. Biol. Med. 119: 701

    PubMed  CAS  Google Scholar 

  8. Gilkeson GS, JP Grudier, and DS Pisetsky (1989) The antibody response of normal mice to immunization with single-stranded DNA of various species origin. Clin Immunol Immunopathol 51: 362

    Article  PubMed  CAS  Google Scholar 

  9. Gilkeson GS, JP Grudier, DG Karounos, and DS Pisetsky (1989) Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA J Immunol 142: 1482

    CAS  Google Scholar 

  10. Tokunaga T, H Yamamoto, S Shimada, H Abe, T Fukuda, Y Fujisawa, Y Furutani, O Yano, T Kataoka, T Sudo, and a. 1. et (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 72: 955

    Google Scholar 

  11. Messina JP, GS Gilkeson, and DS Pisetsky (1993) The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens. Cell Immunol 147: 148

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto S, T Yamamoto, S Shimada, E Kuramoto, O Yano, T Kataoka, and T Tokunaga (1992) DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol 36: 983

    PubMed  CAS  Google Scholar 

  13. Krieg AM, AK Yi, S Matson, TJ Waldschmidt, GA Bishop, R Teasdale, GA Koretzky, and DM Klinman (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546

    Article  PubMed  CAS  Google Scholar 

  14. Cardon LR, C Burge, DA Clayton, and S Karlin (1994) Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci U SA 91: 3799

    Article  CAS  Google Scholar 

  15. Roman M, OE Martin, JS Goodman, MD Nguyen, Y Sato, A Ronaghy, RS Kornbluth, DD Richman, DA Carson, and E Raz (1997) Immunostimulatory DNA sequences function as T helper-l-promoting adjuvants [see comments]. Nat Med 3: 849

    Article  PubMed  CAS  Google Scholar 

  16. Cohen J (1993) Naked DNA Points Way to Vaccines. Science 259: 1691

    Article  PubMed  CAS  Google Scholar 

  17. Ulmer JB, JC Sadoff, and MA Liu (1996) DNA vaccines. Cuff Opin Immunol 8: 53

    Google Scholar 

  18. Wang B, K Ugen, V Srikantan, M Agadjanyan, K Dang, Y Refaeli, A Sato, J Boyer, W Williams, and D Weiner (1993) Gene inoculation generates immune responses against human immunodeficiency virus type 1) Proc. Natl. Acad. Sci. USA 90: 4156

    Google Scholar 

  19. Tang D, M DeVit, and SA Johnston (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356: 152

    Article  PubMed  CAS  Google Scholar 

  20. Ulmer JB, JJ Donnelly, SE Parker, GH Rhodes, PL Feigner, VJ Dwarki, SH Gromkowski, RR Deck, CM Dewitt, A Friedman, LA Hawe, KR Leander, D Martinez, HC Perry, JW Shiver, DL Montgomery, and MA Liu (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259: 1745

    Article  PubMed  CAS  Google Scholar 

  21. Huygen K, J Content, O Denis, DL Montgomery, AM Yawman, RR Deck, CM DeWitt, IM Orme, S Baldwin, C D’Souza, A Drowart, E Lozes, P Vandenbussche, J-P Van Vooren, MA Liu, and JB Ulmer (1996) lmmunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 2: 893

    Google Scholar 

  22. Tascon RE, MJ Colston, S Ragno, E Stavropoulos, D Gregory, and DB Lowrie (1996) Vaccination against tuberculosis by DNA injection. Nat. Med. 2: 888

    Google Scholar 

  23. Sedegah M, R Hedstrom, P Hobart, and SL Hoffman (1994) Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc. Natl. Acad. Sci. USA 91: 9866

    Google Scholar 

  24. Conry RM, AF LoBuglio, J Kantor, J Schlom, F Loechel, SE Moore, LA Sumerel, DL Barlow, S Abrams, and DT Curiel (1994) Immune response to a carcinoembryonic antigen polynucleotide vaccine. Cancer Res 54: 1164

    PubMed  CAS  Google Scholar 

  25. Gilkeson GS, P Ruiz, AM Pippen, AL Alexander, JB Lefkowith, and DS Pisetsky (1996) Modulation of renal disease in autoimmune NZB/NZW mice by immunization with bacterial DNA J Exp Med 183: 1389

    Google Scholar 

  26. Waisman A, PJ Ruiz, DL Hirschberg, A Gelman, JR Oksenberg, S Brocke, F Mor, IR Cohen, and L Steinman (1996) Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat. Med. 2: 899

    Google Scholar 

  27. Raz E, H Tighe, Y Sato, M Corr, JA Dudler, M Roman, SL Swain, HL Spiegelberg, and DA Carson (1996) Preferential induction of a Thl immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc Natl Acad Sci U SA 93: 514

    Article  Google Scholar 

  28. Wu CH, JM Wilson, and GY Wu (1989) Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J Biol Chem 264: 16985

    PubMed  CAS  Google Scholar 

  29. Ferkol T, JC Perales, F Mularo, and RW Hanson (1996) Receptor-mediated gene transfer into macrophages. Proc Natl Acad Sci USA 93: 101

    Article  PubMed  CAS  Google Scholar 

  30. Ferkol T, JC Perales, E Eckman, CS Kaetzel, RW Hanson, and PB Davis (1995) Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J Clin Invest 95: 493

    Article  PubMed  CAS  Google Scholar 

  31. Gillies SD, SL Morrison, VT Oi, and S Tonegawa (1983) A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33: 717

    Article  PubMed  CAS  Google Scholar 

  32. Banerji J, L Olson, and W Schaffner (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33: 729

    Article  PubMed  CAS  Google Scholar 

  33. Mason JO, GT Williams, and MS Neuberger (1985) Transcription cell type specificity is conferred by an immunoglobulin VH gene promoter that includes a functional consensus sequence. Cell 41: 479

    Article  PubMed  CAS  Google Scholar 

  34. Grosschedl R, and D Baltimore (1985) Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements. Cell 41: 885

    Article  PubMed  CAS  Google Scholar 

  35. Morrison S (1985) Transfectomas provide novel chimeric antibodies. Science 229: 1202

    Article  PubMed  CAS  Google Scholar 

  36. Storb U (1987) Transgenic mice with immunoglobulin genes. Annu Rev Immunol 5: 151

    Article  PubMed  CAS  Google Scholar 

  37. Langman RE, and M Cohn (1987) The E-T (elephant-tadpole) paradox necessitates the concept of a unit of B-cell function: the protecton. Mol. Immunol. 24: 675

    Article  PubMed  CAS  Google Scholar 

  38. Lanzavecchia A (1985) Antigen specific interaction between T and B cells. Nature 314: 537

    Article  PubMed  CAS  Google Scholar 

  39. Gerloni M, R Billetta, S Xiong, and M Zanetti (1997) Somatic transgene immunization with DNA encoding an immunoglobulin heavy chain. DNA and Cell Biology 16: 611

    Article  PubMed  CAS  Google Scholar 

  40. Zanetti M (1992) Antigenized antibodies. Nature 355: 466

    Article  Google Scholar 

  41. Billetta R, RM Hollingdale, and M Zanetti (1991) Immunogenicity of an engineered internal image antibody. Proc. Natl. Acad. Sci. USA 88: 4713

    Google Scholar 

  42. Lanza P, R Billetta, S Antonenko, and M Zanetti (1993) Active immunity against the CD4 receptor using an antibody antigenized with residues 41–55 of the first extracellular domain. Proc. Natl. Acad. Sci. USA 90: 11683

    Google Scholar 

  43. Rossi F, R Billetta, Z Ruggeri, and M Zanetti (1995) Engineered idiotypes. lmmunochemical analysis of antigenized antibodies expressing a conformationally constrained Arg-Gly-Asp motif. Mol Immunol 32: 341

    Article  PubMed  CAS  Google Scholar 

  44. Zaghouani H, R Steinman, R Nonacs, H Shah, W Gerhard, and C Bona (1993) Presentation of a viral T cell epitope expressed in the CDR3 region of a self immunoglobulin molecule. Science 259: 224

    Article  PubMed  CAS  Google Scholar 

  45. Zaghouani H, SA Anderson, KE Sperber, C Daian, RC Kennedy, L Mayer, and CA Bona (1995) Induction of antibodies to the human immunodeficiency virus type 1 by immunization of baboons with immunoglobulin molecules carrying the principal neutralizing determinant of the envelope protein. Proc Natl Acad Sci U SA 92: 631

    Article  CAS  Google Scholar 

  46. Cook J, and BH Barber (1995) Recombinant antibodies containing an engineered B-cell epitope capable of eliciting conformation-specific antibody responses. Vaccine 13: 1770

    Article  PubMed  CAS  Google Scholar 

  47. Corthesy B, M Kaufmann, A Phalipon, M Peitsch, MR Neutra, and JP Kraehenbuhl (1996) A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route. J Biol Chem 271: 33670

    Article  PubMed  CAS  Google Scholar 

  48. Cook J, and BH Barber (1997) Recombinant antibodies with conformationally constrained HIV type 1 epitope inserts elicit glycoprotein 160-specific antibody responses in vivo. Aids Res Hum Retroviruses 13: 449

    Article  PubMed  CAS  Google Scholar 

  49. Zanetti M, F Rossi, P Lanza, G Filaci, RH Lee, and R Billetta (1992) Theoretical and praticai aspects of antigenized antibodies. Immunol. Rev. 130: 125

    Google Scholar 

  50. Billetta R, G Filaci, and M Zanetti (1995) Major histocompatibility complex class 1-restricted presentation of influenza virus nucleoprotein peptide by B lymphoma cells harboring an antibody gene antigenized with the virus peptide. Eur J Immunol 25: 776

    Article  PubMed  CAS  Google Scholar 

  51. Zaghouani H, M Krystal, H Kuzu, T Moran, H Shah, Y Kuzu, J Schulman, and C Bona (1992) Cells expressing an H chain Ig gene carrying a viral T cell epitope are lysed by specific cytolytic T cells. 148: 3604

    CAS  Google Scholar 

  52. Xiong S, M Gerloni, and M Zanetti (1997) Engineering vaccines with heterologous B and T cell epitopes using immunoglobulin genes. Nature Biotech. 15: 882

    Article  CAS  Google Scholar 

  53. Zavala F, JP Tam, MR Hollingdale, AH Cochrane, I Quakyi, RS Nussenzweig, and V Nussenzweig (1985) Rationale for Development of a Synthetic Vaccine Against Plasmodium falciparum Malaria. Science 228: 1436

    Article  PubMed  CAS  Google Scholar 

  54. Clyde DF, VC McCarthy, RM Miller, and RB Hornick (1973) Specificity of protectionof man immunized against sporozoite-induced falciparum malaria. Am. J. Med. Sci. 266: 398

    Google Scholar 

  55. Egan JE, SL Hoffman, JD Haynes, JC Sadoff, I Schneider, GE Grau, MR Hollingdale, WR Ballou, and DM Gordon (1993) Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am J Trop Med Hyg 49: 166

    PubMed  CAS  Google Scholar 

  56. Edelman R, SL Hoffman, JR Davis, M Beier, MB Sztein, G Losonsky, DA Herrington, HA Eddy, MR Hollingdale, DM Gordon, and al. et (1993) Long-term persistence of sterile immunity in a volunteer immunized with X-irradiated Plasmodium falciparum sporozoites. J Infect Dis 168: 1066

    Article  PubMed  CAS  Google Scholar 

  57. Stoute JA, M Slaoui, DG Heppner, P Momin, KE Kester, P Desmons, BT Wellde, N Garcon, U Krzych, M Marchand, WR Ballou, and JD Cohen (1997) A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS, S Malaria Vaccine Evaluation Group [see comments]. N Engl J Med 336: 86

    Google Scholar 

  58. GerloniM, S Xiong, and M Zanetti (1997) Durable immunity and immunologic memory to a parasite antigen induced by somatic transgene immunization. Vaccine 16

    Google Scholar 

  59. Raz E, DA Carson, SE Parker, TB Parr, AM Abai, G Aichinger, SH Gromkowski, M Singh, D Lew, MA Yankauckas, SM Baird, and GH Rhodes (1994) Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Natl. Acad. Sci. USA 91: 9519

    Google Scholar 

  60. Davis HL, M Mancini, M Michel, and R Whalen (1996) DNA-based immunization to hepatitis B surface antigen: longevity of primary and effect of boost. Vaccine 14: 910

    Article  PubMed  CAS  Google Scholar 

  61. Xiang ZQ, SSpitalnik, M Tran, WH Wunner, J Cheng, and HC Ertl (1994) Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 199: 132

    CAS  Google Scholar 

  62. Anderson R, X-M Gao, A Papakonstantinopoulou, M Roberts, and G Dougan (1996) Immune response in mice following immunization with DNA encoding fragment C of tetanus toxin. Infect. Imm. 64: 3168

    Google Scholar 

  63. Salk J (1984) One-dose immunization against paralytic poliomyelitis using a noninfectious vaccine. Rev Infect Dis: S444

    Google Scholar 

  64. Mitchison NA (1971) The carrier effect in the secondary response to hapten-protein conjugates. II. Cellular cooperation. Eur J Immunol 1: 18

    Article  PubMed  CAS  Google Scholar 

  65. Herrington DA, DF Clyde, G Losonsky, M Cortesia, JR Murphy, J Davis, S Bagar, AM Felix, EP Heimer, and D Gillessen (1987) Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. Nature 328: 257

    Article  PubMed  CAS  Google Scholar 

  66. Tam JP, and YA Lu (1989) Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc Natl Acad Sci U SA 86: 9084

    Article  CAS  Google Scholar 

  67. Tam JP, P Clavijo, YA Lu, V Nussenzweig, R Nussenzweig, and F Zavala (1990) Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J Exp Med 171: 299

    Article  PubMed  CAS  Google Scholar 

  68. Munesinghe DY, P Clavijo, MC Calle, RS Nussenzweig, and E Nardin (1991) Immunogenicity of multiple antigen peptides (MAP) containing T and B cell epitopes of the repeat region of the P. falciparum circumsporozoite protein. Eur J Immunol 21: 3015

    Google Scholar 

  69. Ballou WR, SL Hoffman, JA Sherwood, MR Hollingdale, FA Neva, WT Hockmeyer, DM Gordon, 1 Schneider, RA Wirtz, and JF Young (1987) Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet 1: 1277

    Article  PubMed  CAS  Google Scholar 

  70. Herrington DA, GA Losonsky, G Smith, F Volvovitz, M Cochran, K Jackson, SL Hoffman, DM Gordon, MM Levine, and R Edelman (1992) Safety and immunogenicity in volunteers of a recombinant Plasmodium falciparum circumsporozoite protein malaria vaccine produced in Lepidopteran cells. Vaccine 10: 841

    Article  PubMed  CAS  Google Scholar 

  71. Rotzschke O, K Falk, K Deres, H Schild, M Norda, J Metzger, G Jung, and H-G Rammensee (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348: 252

    Article  PubMed  CAS  Google Scholar 

  72. Xiong S, M Gerloni, and M Zanetti (1997) in vivo role of B lymphocytes in somatic transgene immunization. Proc. Natl. Acad. Sci. USA 94: 6352

    Google Scholar 

  73. Holmberg D, AA Freitas, D Portnoi, F Jacquemart, S Avrameas, and A Coutinho (1986) Antibody repertoires of normal BALB/c mice: B lymphocyte populations defined by state of activation. Immunol. Rev. 93: 147

    Google Scholar 

  74. Glotz D, M Sollazzo, S Riley, and M Zanetti (1988) Isotype, VH genes, and antigen-binding analysis of hybridomas from newborn BALB/c mice. J. Immunol. 141: 383

    Google Scholar 

  75. Bennett RM, GT Gabor, and MM Merritt (1985) DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradtion of DNA J. Clin. Invest. 76: 2182

    Google Scholar 

  76. Donaldson YK, MJ Arends, E Duvall, and CC Bird (1993) A PCR approach to discriminate between integrated and episomal HPV DNA in small clinical specimens. Mol Cell Probes 7: 285

    Article  PubMed  CAS  Google Scholar 

  77. Chen CM, MP Shyu, LC Au, HW Chu, WT Cheng, and KB Choo (1994) Analysis of deletion of the integrated human papillomavirus 16 sequence in cervical cancer: a rapid multiplex polymerase chain reaction approach. J Med Virol 44: 206

    Article  PubMed  CAS  Google Scholar 

  78. Daniel B, G Mukherjee, L Seshadri, E Vallikad, and S Krishna (1995) Changes in the physical state and expression of human papillomavirus type 16 in the progression of cervical intraepithelial neoplasia lesions analysed by PCR. J Gen Viro1: 2589

    Google Scholar 

  79. Griffiths GM, C Berek, M Kaartinen, and C Milstein (1984) Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312: 271

    Article  PubMed  CAS  Google Scholar 

  80. Gerloni M, D Lo, and M Zanetti (1998) DNA immunization in re1B-deficient mice discloses a role for dendritic cells in IgG1~IgM switch in vivo. Eur. J. Immunol. In press, ( 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zanetti, M., Xiong, S., Gerloni, M. (1998). DNA vaccination by somatic transgene immunization. In: Raz, E. (eds) Gene Vaccination: Theory and Practice. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46867-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46867-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46869-8

  • Online ISBN: 978-3-642-46867-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics