Skip to main content

Structural Phase Transformation

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 27))

Abstract

Examples of phase transformations (transitions) in various materials are first introduced and the difference between the continuous and discontinuous transformation is outlined. The difference is theoretically analyzed by combining Ehrenfest’s criterion and Landau’s formulation and graphically shown by the G-T-η diagrams. Second, the precursor phenomena associated with the weak first-order transformation, which appear in the martensitic transformation of β-phase shape memory alloys, perovskite type ferroelectric materials and A-15 type superconductors, are explained by using a statistical thermodynamic theory. Transformations of other useful new materials such as ceramics and diamond are also described from the physical view point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Kaufman, M. Cohen: Prog. Met. Phys. 7, 165 (1958)

    Article  Google Scholar 

  2. J.W. Merz: Phys. Rev. 76, 1221 (1949)

    Article  ADS  Google Scholar 

  3. F.E. Fujita: In Proc. 5th Conf. R.Q.M. (Wurzburg), ed. by S. Steeb, H. Warlimont (Elsevier, 1985 ); pp. 585–588;

    Google Scholar 

  4. F.E. Fujita: J. Non-Cryst. Solids 106, 286 (1988);

    Article  ADS  Google Scholar 

  5. F.E. Fujita: Mater. Sci. Eng. A 127, 243–248 (1990)

    Article  Google Scholar 

  6. G.V. Kurdjumov, G. Sacks: Z. Phys. 64, 325–343 (1930)

    Article  ADS  Google Scholar 

  7. Z. Nishiyama: Sci. Rep. Tohoku Imp. Univ. I, 23, 637–664 (1934)

    Google Scholar 

  8. A.B. Greninger, A.R. Troiano: Trans. AIME, 185, 590–598 (1949)

    Google Scholar 

  9. F.E. Fujita: Metall. Trans. 8A, 1727–1736 (1979)

    Google Scholar 

  10. R. Oshima, C.M. Wayman: Scr. Metall. 8, 223–230 (1974)

    Article  Google Scholar 

  11. R. Oshima, H. Azuma, F.E. Fujita: Trans. J.I.M. 17, 293–298 (1976)

    Google Scholar 

  12. T. Saburi, C.M. Wayman, K. Tanaka, S. Nenno: Acta Met. 28, 15–32 (1980)

    Article  Google Scholar 

  13. K. Shimizu, K. Otsuka: Int’l Metals Rev. 31, 93–114 (1986)

    Article  Google Scholar 

  14. N. Nakanishi, Y. Murakami, S. Kachi, T. Mori, S. Miura: Phys. Lett. 37A, 61 (1971)

    Article  Google Scholar 

  15. H. Sakamoto, K. Otsuka, K. Shimizu: Scr. Metall. 11, 607–611 (1977)

    Article  Google Scholar 

  16. K.R. Keller, J.J. Hanak: Phys. Rev. 154, 628 (1967)

    Article  ADS  Google Scholar 

  17. D.J. Gunton, G.A. Saunders: Solid State Commun. 12, 569 (1973);

    Article  ADS  Google Scholar 

  18. D.J. Gunton, G.A. Saunders: Ibid. 14, 865 (1974)

    Google Scholar 

  19. G. Shirane, J.D. Axe: Phys. Rev. Lett. 27, 1803 (1967)

    Article  ADS  Google Scholar 

  20. R. Oshima, M. Sugiyama, F.E. Fujita: Metall. Trans A, 19A, 803–810 (1988)

    Google Scholar 

  21. S. Muto, S. Takeda, R. Oshima, F.E. Fujita: Jpn. J. Appl. Phys. 27, L1387 (1988)

    Article  ADS  Google Scholar 

  22. F.E. Fujita: Mater. Sci. Eng. A 27, 2453–2458 (1990)

    Google Scholar 

  23. W.M. Kriven: The transformation mechanism of spherical zirconia particles in alumina, in Advances in Ceramics, 12, Sci. & Tech. Zirconias II, ed. by N. Clausen et al. ( American Ceramic Soc., Columbus 1984 ) pp. 64–77

    Google Scholar 

  24. W.M. Kriven: J. Am. Ceramic Soc. 71, 1021–1030 (1988)

    Article  Google Scholar 

  25. A.B. Aust, H.G. Drickamer: Science 140, 817 (1963)

    Article  ADS  Google Scholar 

  26. F.B. Bundy, H.T. Hall, H.M. Strong, R.J. Wentorf, Jr.: Nature (London) 176, 51–54 (1955)

    Article  ADS  Google Scholar 

  27. B.V. Deryaguin, D.B. Fedoseev: Zh. Fiz. Khim A2, 2360 (1968).

    Google Scholar 

  28. B.V. Deryaguin, D.B. Fedoseev: Sci. Am. 233 (5), 102–109 (1975).

    Article  ADS  Google Scholar 

  29. B.V. Deryaguin, D.B. Fedoseev: Dkl. Akad. Nauk USSR 231, 333 (1976).

    Google Scholar 

  30. B.V. Deryaguin, D.B. Fedoseev: Ch.4 lzd. Nauka, Moscow, USSR (1977)

    Google Scholar 

  31. J.C. Angus, H.A. Will, W.S. Stanko: J. Appl. Phys. 39, 2915–2922 (1968)

    Article  ADS  Google Scholar 

  32. S. Matsumoto, Y. Sato, M. Kamo, N. Setaka: Jpn. J. Appl. Phys. 21, 183 (1982)

    Article  ADS  Google Scholar 

  33. H. W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  34. S. Iijima: Nature 347, 56 (1991);

    Article  ADS  Google Scholar 

  35. S. Iijima, T. Ichihashi, Y. Ando: Nature 356, 776 (1992);

    Article  ADS  Google Scholar 

  36. R. Saito, G. Dresselhaus, M.S. Dresselhaus: J. Appl. Phys. 73, 494 (1993)

    Article  ADS  Google Scholar 

  37. S. Muto, G. Van Tendeloo, S. Amelinckx: Phil. Mag. B 67, 443 (1993);

    Google Scholar 

  38. G. Van Tendeloo, S. Amelinckx, S. Muto, M.A. Verheijen, P. H.M. Van Loosdrecht, G. Meijer: Ultramicrosc. 51, 168 (1993)

    Article  Google Scholar 

  39. H. Kuzmany, J. Fink, M. Mehring, S. Roth (eds): Electrical Properties of Fullerenes, Springer Ser. Solid-State Sci., Vol. 117 ( Springer, Berlin, Heidelberg 1993 )

    Google Scholar 

  40. S. Hasegawa, T. Nishiwaki, H. Habuchi, S. Nitta, S. Nonomura: Fullerene Science and Technology 3, 163 (1995)

    Article  Google Scholar 

  41. R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, G. Dresselhaus: J. Phys. Soc. Jpn. 63, 2252 (1994)

    Article  ADS  Google Scholar 

  42. See, for instance, U. Gonser: Mössbauer Spectroscopy in Materials Science, Chap. 9

    Google Scholar 

  43. Y. Hirose, Y. Terasawa: Jpn. J. Appl. Phys. 25, L519 (1986)

    Article  ADS  Google Scholar 

  44. Y. Hirose, S. Amanuma, K. Komaki: J. Appl. Phys. 68, 6401 (1990)

    Article  ADS  Google Scholar 

  45. F. Banhart, P.M. Ajayan: Nature 382, 433 (1996);

    Article  ADS  Google Scholar 

  46. F. Banhart: Diamantbildung in “Kohlenstoffzwiebeln”. Phys. Bl. 53, 33–35 (1997)

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fujita, F.E. (1998). Structural Phase Transformation. In: Fujita, F.E. (eds) Physics of New Materials. Springer Series in Materials Science, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46862-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46862-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46864-3

  • Online ISBN: 978-3-642-46862-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics