Monte Carlo Simulations

  • Wolfgang Kinzel
  • Georg Reents


Monte Carlo → casino → roulette → random numbers: This is the chain of associations which gave an important method of computer simulation its name. With the help of random numbers, one can use the computer to simulate, for example, the motion of an interacting many-body system in a heat reservoir. As in the real experiment the temperature and other parameters can be varied. The materials being modeled can be heated up or cooled down, and at sufficiently low temperatures one can observe how gases liquefy, how atoms in a magnetic material get aligned, or how metals lose their electric resistance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Gould H., Tobochnik J. (1996) An Introduction to Computer Simulation Methods: Applications to Physical Systems. Addison-Wesley, Reading, MAGoogle Scholar
  2. Sander E., Sander L.M., Ziff R.M. (1994) Fractals and Fractal Correlations. Computers in Physics 8: 420ADSCrossRefGoogle Scholar
  3. Stauffer D., Aharony A. (1994) Introduction to Percolation Theory. Taylor & Francis, London, Bristol, PAGoogle Scholar
  4. Binder K., Heermann D.W. (1992) Monte Carlo Simulation in Statistical Physics: An Introduction. Springer, Berlin, Heidelberg, New YorkCrossRefzbMATHGoogle Scholar
  5. Honerkamp J. (1994) Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis. VCH, Weinheim, New YorkGoogle Scholar
  6. Koonin S.E., Meredith D.C. (1990) Computational Physics, Fortran Version. Addison-Wesley, Reading, MAGoogle Scholar
  7. Percus A.G., Martin O.C. (1996) Dimensional Dependence in the Euclidean Travelling Salesman Problem. Phys. Rev. Lett. 76: 1188ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Wolfgang Kinzel
    • 1
  • Georg Reents
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgDeutschland

Personalised recommendations