Skip to main content

Optimization on closely convex sets

  • Conference paper
Book cover Generalized Convexity

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 405))

Abstract

In the paper an optimization problem on locally convex spaces is studied. This problem is a generalization of both the classical optimization and those which involve set functions. First and second order optimality conditions and, for closely convex case, a duality theorem are stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleman, A., On some generalization of convex sets and convex functions. Anal. Numer. Theor. Approx (Cluj) 14 (1985), 1–6.

    Google Scholar 

  2. Begis, D. and Glowinski, R., Application de la méthode des éléments finis à l’approximation d’un problème de domaine optimal. Méthodes de résolution des problèmes approchés. Applied Math. and Opt. 2 (1975), 130–169.

    Article  Google Scholar 

  3. Cea, J., Gioan, A. and Michel, J., Quelque rèsultats sur l’identification des domaines. Calcolo 10 (1973), 207–233.

    Article  Google Scholar 

  4. Cobzas, S. T. and Muntean, I., Duality relations and characterizations of best approximation for p-convex sets. Mathematica- Revue d’analyse num. et de théorie de l’approx. Tome 16, 2 (1987), 95–108.

    Google Scholar 

  5. Chou, J. H., Hsia, W. S. and Lee, T. Y., Second order optimality conditions for mathematical programming set functions. J. Austral. Math. Soc. (ser. B) 26 (1985), 383–394.

    Google Scholar 

  6. Deâk, E., ‘ber konvexe und interne Funktionen sowie eine gemeinsame verallgemeinerung von beiden. Ann. Univ. Eötvös Sci. Budapest. Sect Math. 5 (1962), 109–154.

    Google Scholar 

  7. Flett, T. M., Differential Analysis, Cambridge University Press, 1980.

    Google Scholar 

  8. Frölicher, A. and Kriegl, A., Linear spaces and differentiation theory. John Wiley and Sons, 1988.

    Google Scholar 

  9. Hoffmann, K.-H. and Kornstaedt, H.-J., Higher order necessary conditions in abstract mathematical programming. J. Optim. Theory Appl. 26 (1978), 533–568.

    Article  Google Scholar 

  10. Illés, T., Joó, I. and Kassay, G., On a nonconvex Farkas theorem and its application in optimization theory, Eötvös Lorand Tudoma’nyegyetem Operâciókutatâsi Tanszék, Report 1992–03, 3–11.

    Google Scholar 

  11. Karlin, S., Mathematical Methods and Theory in Games, Programming and Economics. Vol 1, Reading Mass: Addision Wesley, 1959.

    Google Scholar 

  12. Kolumbân, J. and Blaga, L., On the weakly convex sets, STUDIA Univ. Babes-Bolyai, Mathematica, 35 (1990), 13–20.

    Google Scholar 

  13. Koshi, S., Lai, H. C. and Komuro, N., Convex programming on spaces of measurable functions, Hokkaydo Math J. 14 (1985), 75–84.

    Google Scholar 

  14. Lai, H. C., Yang, S. S. and Hwang G., Duality in mathematical programming of set functions: On Fenchel duality theorem. J. Math. Appl 95 (1983), 223–234.

    Google Scholar 

  15. Lai, H. C. and Yang, S. S., Saddle point and duality in the optimization theory of the convex set functions. J. Austral Math. Soc. (ser B) 24 (1982), 130–137.

    Article  Google Scholar 

  16. Lai H. C. and Lin, L. J., The Fenchel-Moreau theorem for set functions, Proceedings of the American Mathematical Society, 103 (1988), 85–91.

    Article  Google Scholar 

  17. McCormick, G. P., Second order conditions for constrained minima, SIAM J. Appl Math. 15 (1967), 641–652.

    Google Scholar 

  18. Morris, R. J. T., Optimal constrained selection of measurable subsets, J. Math. Anal. Appl. 70 (1979), 546–562.

    Article  Google Scholar 

  19. Muntean, I., A multiplier rule in p-convex programming, “Babes- Bolyai” University, Faculty of Math., Research seminar’s. Seminar on Math. Analysis, Preprint No. 7 (1985), 149–156.

    Google Scholar 

  20. Neumann, J. von, On complete topological spaces, Trans. Amer. Math. Soc., 37 (1935), 1–20.

    Article  Google Scholar 

  21. Sokolowski, J. and Zolesio, J. P., Introduction to Shape Optimization, Shape Sensitivity Analysis, Springer-Verlag, Berlin—Heidelberg, 1992.

    Google Scholar 

  22. Wang, P. K. C., On a class of optimization problems involving domain variations, “International Symposium on New Trends in System Analysis, Versailles, France, Dec. 1976”, Lecture Notes in Control and Information Sciences, No. 2, Springer-Verlag, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blaga, L., Kolumbán, J. (1994). Optimization on closely convex sets. In: Komlósi, S., Rapcsák, T., Schaible, S. (eds) Generalized Convexity. Lecture Notes in Economics and Mathematical Systems, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46802-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46802-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57624-2

  • Online ISBN: 978-3-642-46802-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics