Skip to main content

The Role of Misdirected Plasticity in Plaque Biogenesis and Alzheimer’s Disease Pathology

  • Conference paper
Growth Factors and Alzheimer’s Disease

Summary

Studies on animal models over the past several years have demonstrated that neurons have the capacity to sprout and form new connections after injury or cell loss. This process may represent the plasticity by which the brain can modify its circuitry and compensate for neuronal or synaptic loss after trauma and in a variety of disease states. Lesions of the entorhinal cortex in the rodent brain and degenerative cell loss in this region in Alzheimer’s disease (AD) are both accompanied by axon sprouting in the dentate gyrus. Animal models have accurately predicted the nature of the sprouting response except for the presence of senile plaques within the area of active sprouting. We have proposed that misdirected sprouting may contribute to plaque biogenesis in this region. The core of senile plaques consists of β/A4 protein. Synthetic peptides homologous to the β/A4 protein (β1–28 and β1–42) enhance survival in cultures of hippocampal neurons and the β1–42 fragment increases dendrite number, dendritic branching, and axonal elongation. This suggests that β/A4 protein may participate in anomalous growth-related events in vivo. The morphological diversity of plaques may reflect different stages of plaque formation in which plasticity processes themselves become misdirected, overcompensated, or generate an enhanced vulnerability in the highly plastic brain areas essential to higher cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alphas-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52: 487–501

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) A characteristic disease of the cerebral cortex (translated by Bick KL). Schultze E, Snell O (eds) Allgemeine Zeitschrift für Psychiatrie und Psychisch-Gerichtliche Medizin 64: 146–148

    Google Scholar 

  • Baird A, Schubert D, Ling N, Guillemin R (1988) Receptor and heparin binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA 85: 2324–2328

    Article  PubMed  CAS  Google Scholar 

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126: 397–425

    Article  PubMed  CAS  Google Scholar 

  • Bouman L (1934) Senile plaques. Brain 57: 128–142

    Article  Google Scholar 

  • Cajal RS (1928) Degeneration and regeneration of the nervous system (translated by May RM) Oxford University Press, London

    Google Scholar 

  • Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s Disease. Neurobiol Aging 8: 521–545

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Anderson KJ (1988) Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer’s disease. In: Waxman SJ (eds) Functional recovery in neurological diseases. Raven, New York, pp 313–335

    Google Scholar 

  • Cotman CW, Matthews DA, Taylor D, Lynch G (1973) Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Prod Natl Acad Sci USA 70: 3473–3477

    Article  CAS  Google Scholar 

  • Crain BJ, Burger PC (1988) The laminar distribution of neuritic plaques in the fascia dentata of patients with Alzheimer’s Disease. Acta Neuropathol 76: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Dotti CG, Banker GA (1987) Experimentally induced alteration in the polarity of developing neurons. Nature 330: 254–256

    Article  PubMed  CAS  Google Scholar 

  • Dyrks T, Weidemann A, Multhaup G, Salbaum JM, Lemaire HG, Kang J, Muller-Hill B, Masters CL, Beyreuther K (1988) Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EM BO J 7: 949–957

    CAS  Google Scholar 

  • Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 262: 2551–2556

    Article  PubMed  CAS  Google Scholar 

  • Fischer O (1907) Miliary necrosis with nodular proliferation of the neurofibrils, a common change of the cerebral cortex in senile dementia. Ziehen T (ed) Monatsschrift für Psychiatric and Neurol 22: 361–372

    Google Scholar 

  • Geddes JW, Monaghan DT, Cotman CW, Lott IT, Kim RC, Chui HC (1985) Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 230: 1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Geddes JW, Anderson KJ, Cotman CW (1986) Senile plaques as aberrant sprout-stimulating structures. Exp Neurol 94: 767–776

    Article  PubMed  CAS  Google Scholar 

  • Giaccone G, Tagliavini F, Linoli G, Bouras C, Frigerio L, Frangione B, Bugiani O (1989) Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci Lett 97: 232–238

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong W (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Comm 120: 885–890

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong W (1986) The nature and pathogenesis of the amyloid deposits in Alzheimer’s disease. In: Marrink J, Van Rijswijk M (eds) Amyloidoisis. Martinus Nijhoff, Boston

    Chapter  Google Scholar 

  • Hyman BT, Kromer LJ, Van Hoesen GW (1987) Reinnervation of the hippocampal perforant pathway zone in Alzheimer’s Disease. Ann Neurol 21: 259–267

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y (1988) Massive somatodendritic sprouting of cortical neurons in Alzheimer’s disease. Brain Res 459: 138–144

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Yanagisawa N, Allsop D, Glenner G (1989) Evidence of amyloid (3-protein immunoreactive early plaque lesions in Down’s syndrome brains. Lab Invest 61: 133–137

    PubMed  CAS  Google Scholar 

  • Iseki E, Matsushita M, Kosaka K, Kondo H, Ishii T, Amano N (1989) Distribution and morphology of brain stem plaques in Alzheimer’s disease. Acta Neuropathol 78: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Ishii T. Raga S (1984) Immuno-electron-microscopic localization of complements in amyloid fibrils of senile plaques. Acta Neuropathol 63: 296–300

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Haga S, Shimizu F (1975) Identification of components of immunoglobulins in senile plaque by means of fluorescent antibody technique. Acta Neuropathol 32: 157–162

    Article  PubMed  CAS  Google Scholar 

  • Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135: 309–319

    PubMed  CAS  Google Scholar 

  • Kisilevsky R (1987) From arthritis to Alzheimer’s disease: current concepts on the pathogenesis of amyloidosis. Can J Physiol Pharmacol 65: 1805–1815

    Article  PubMed  CAS  Google Scholar 

  • Koh J, Yang L, Cotman C (in press) Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res

    Google Scholar 

  • Loesche J, Steward O (1977) Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: recovery of alternation performance following unilateral entorhinal cortex lesions. Brain Res Bull 2: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Gall C, Cotman CW (1977) Temporal parameters of axon “sprouting” in the brain of adult rat. Exp Neurol 54: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Matthews D, Cotman C, Lynch G (1976a) An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I: Magnitude and time course of degeneration. Brain Res 115: 1–21

    CAS  Google Scholar 

  • Matthews D, Cotman C, Lynch G (1976b) An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. II: Reappearance of morphologically normal synaptic contacts. Brain Res 115: 23–41

    CAS  Google Scholar 

  • Mattson MP, Dou P, Kater SB (1988) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci 8: 2087–2100

    PubMed  CAS  Google Scholar 

  • Papasozomenos SC (1989) Tau protein immunoreactivity in dementia of the Alzheimer type: I. morphology, evolution, distribution, and pathogenic implications. Lab Invest 60: 123–137

    PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH (1985) New insights into the nature of senile ( Alzheimer type) plaques. Trends Neurosci 8: 301–303

    Article  Google Scholar 

  • Probst A, Brunnschweiler H, Lautenschlager C, Ulrich J (1987) A special type of senile plaque, possibly an initial stage. Acta Neuropathol (Berl) 74: 133–141

    Article  CAS  Google Scholar 

  • Rudell RD, Ambler MW, Wisniewski HM (1984) Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol Exp Neurol 43: 306

    Article  Google Scholar 

  • Scheff SW, Cotman CW (1977) Recovery of spontaneous alternation following lesions of the entorhinal cortex in adult rats: possible correlation to axon sprouting. Behav Biol 21: 286–293

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Podlisny MB, Joachim CL, Vickers EA, Lee G, Fritz C, Oltersdorf T (1988)β-amyloid precursor protein of Alzheimer disease occurs as 110–135 Kilodalton membrane-associated protein in neural and nonneural tissues. Proc Natl Acad USA 85:7341–7345

    Article  CAS  Google Scholar 

  • Spillantini MG, Coedert M, Jakes R, Klug A (1990) Different configurational states of 13-amyloid and their distributions relative to plaques and tangles in Alzheimer disease. Proc Natl Acad Sci USA 87: 3947–3951

    Article  PubMed  CAS  Google Scholar 

  • Struble RG, Whitehouse PJ, Price DL (1982) Cholinergic innervation in neuritic plaques. Science 216: 413–415

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson BE, Corsellis JA (1984) Aging and the dementias. In: Adams JH, Corsellis JA, Duchen LW (eds) Greenfields neuropathology, 4th edn. Wiley, New York, pp 947–967

    Google Scholar 

  • Verga L, Frangione B, Tagliavini F, Giaccone G, Migheli A, Bugiani O (1989) Alzheimer patients and Down patients: cerebral preamyloid deposits differ ultrastructurally and histochemically from the amyloid of senile plaques. Neurosci Lett 105: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Weidmann A, Konig G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126

    Article  Google Scholar 

  • Whitson JS, Glabe CG, Shontani E, Abcar A, Cotman CW (1990)β-Amyloid protein promotes neuritic branching in hippocampal cultures. Neutrosci Lett 110:319–324

    Article  CAS  Google Scholar 

  • Whitson JS, Sekoe DJ, Cotman CW (1989) Amyloid ß protein enhances the survival of hippocampal neurons in vitro. Science 243: 1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski H, Terry RD (1973) Reexamination of the pathogenesis of the senile plaque. Prog Neuropathol 2: 1–26

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cotman, C.W., Cummings, B.J., Whitson, J.S. (1991). The Role of Misdirected Plasticity in Plaque Biogenesis and Alzheimer’s Disease Pathology. In: Hefti, F., Brachet, P., Will, B., Christen, Y. (eds) Growth Factors and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46722-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46722-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46724-0

  • Online ISBN: 978-3-642-46722-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics