Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 81))

Abstract

The model formulated for transmission of HIV (the AIDS virus) and the subsequent progression to AIDS is a system of nonlinear differential equations. They describe the infection process by interactions within and between risk groups such as homosexual men, bisexual men, female prostitutes, intravenous drug abusers and heterosexually active men and women. The progression to AIDS after infection is modeled by a sequence of stages. A modification of this model is being used to study the transmission of HIV infection and the incidence of AIDS in risk groups in the United States.

Supported by Contract 200-87-0515 from the Centers for Disease Control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson R.M., May R.M., and McLean A.R. (1988). Possible demographic consequences of AIDS in developing countries, Nature 332, 228–234.

    Article  Google Scholar 

  • Anderson R.M., Medley G.F., May R.M. and Johnson A.M. (1986). A preliminary study of the transmission dynamics of the H.I.V., the causative agent of AIDS, IMA J Math Appl in Med and Biol 3, 229–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Bailey N.T.J. and Duppenthaler J. (1985). Sensitivity analysis in the modeling of infectious disease dynamics, J Math Biology 10, 113–131.

    Article  MathSciNet  Google Scholar 

  • Bongaarts J. (1987). A model of the spread of HIV infection and the demographic impact of AIDS, preprint, 24 pages.

    Google Scholar 

  • Castillo-Chavez C., Cooke K., Huang W., and Levin S.A. (1989). On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1. Single population models, J Math Biology, in press.

    Google Scholar 

  • Curran J.W., Laurence D.N., Jaffe H.W. et. al. (1984). Acquired immunodeficiency syndrome ( AIDS) associated with transfusion, N Engl J Med 310, 69–75.

    Article  Google Scholar 

  • Curran J.W., Morgan W.M., Hardy A.M., Jaffe H.W., Darrow W.W. and Dowdle W.R. (1985). The epidemiology of AIDS: Current status and future prospects, Science 229, 1352–1357.

    Article  Google Scholar 

  • Centers for Disease Control (1984). Declining rates of rectal and pharangeal gonorrhea among males–New York City, MMWR 33, 295–297.

    Google Scholar 

  • Centers for Disease Control (1985a). Update: AIDS in San Francisco Cohort Study, 1978–1985, MMWR 34, 573–575.

    Google Scholar 

  • Centers for Disease Control (1985b). Self-reported behavioral change among gay and bisexual men–San Francisco, MMWR 34, 613–615.

    Google Scholar 

  • Centers for Disease Control (1986a). HTLV III/LAV antibody prevalence in U.S. military recruit applicants, MMWR 35, 421–424.

    Google Scholar 

  • Centers for Disease Control (1986b). AIDS among blacks and Hispanics–United States, MMWR 35, 655–666.

    Google Scholar 

  • Centers for Disease Control (1986c). Update: Acquired Immunodeficiency Syndrome–United States, MMWR 35, 757–766.

    Google Scholar 

  • Centers for Disease Control (1986d). Transfusion-associated HTLV-III/LAV from a seronegative donor–Colorado, MMWR 35, 389–391.

    Google Scholar 

  • De Gruttola V. and Mayer K.H. (1987). Assessing and modeling heterosexual spread of the HIV in the United States, Reviews of Infectious Diseases 10, #1, 138–150.

    Google Scholar 

  • Dietz K. (1987). On the transmission dynamics of HIV, preprint, 39 pages. Gallo R.C. (1987). The AIDS virus, Scientific American, January 1987, 47–56.

    Google Scholar 

  • Gallo R. C. (1987). The AIDS virus, Scientific Ameriacn, January 1987, 47–56

    Google Scholar 

  • Goedert J.J., Biggar R.J., Weiss S.H. (1986). Three-year incidence of AIDS in five cohorts of HTLV-III-infected risk group members, Science 231, 992–995.

    Article  Google Scholar 

  • Hahn B.H., Shaw G.M., Taylor M.E., Redfield R.R., Markham P.D., Salahuddin S.Z., Wong-Staal F., Gallo R.C., Parks E.S., Parks W.P. (1986). Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS, Science 232, 1548–1553.

    Article  Google Scholar 

  • Hethcote H.W. (1978). An immunization model for a heterogeneous population, Theor Pop Biol 14, 338–349.

    Article  MathSciNet  Google Scholar 

  • Hethcote H.W. (1983). Measles and rubella in the United States, Am J. Epid 117, 2–13.

    Google Scholar 

  • Hethcote H.W., Stech H.W. and van den Driessche P. (1981). Periodicity and stability in epidemic models: a survey, in Differential Equations and Applications in Ecology, Epidemics and Population Problems, S. Busenberg and K.L. Cooke, Eds. Academic Press, New York, 65–82.

    Google Scholar 

  • Hethcote H.W. and Theime H. (1985). Stability of the endemic equilibrium in epidemic models with subpopulations, Math Biosci 75, 205–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote H.W. and Van Ark J.W. (1987). Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation and immunization programs, Math Biosci 84, 85–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote H.W., Yorke J.A. and Nold A. (1982). Gonorrhea modeling: a comparison of control methods, Math Biosci 58, 93–109.

    Article  MATH  Google Scholar 

  • Hethcote H.W. and Yorke J.A. (1984). Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematics 56, Springer-Verlag, Berlin.

    Google Scholar 

  • Hyman J.M. and Stanley E.A. (1988). Using mathematical models to understand the AIDS epidemic, Math Biosciences, to appear.

    Google Scholar 

  • Jacquez J.A., Koopman J., Sattenspiel L., Simon C., and Perry T. (1988). Modeling and analysis of HIV transmission: The role of contact patterns, preprint, 48 pages.

    Google Scholar 

  • Knox E.G. (1986). A transmission model for AIDS, Eur J Epidem 2, #3, 165–177.

    Google Scholar 

  • Lajmanovich A. and Yorke J.A. (1976). A deterministic model for gonorrhea in a nonhomogeneous population, Math Biosci 28, 221–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Laurence J. (1986). AIDS: Definition, epidemiology and etiology, Laboratory Medicine 17, 659–663.

    Google Scholar 

  • Liu K.-J., Lawrence D.N., Morgan W.M., Peterman T A, Haverkos H.W., and Bregman D.J. (1986). A model-based approach for estimating the mean incubation period of transfusion-associated acquired immunodeficiency syndrome, Proc Nat Acad Sci 83, 3051–3055.

    Article  Google Scholar 

  • May R.M. and Anderson R.M. (1987). Transmission dynamics of HIV infection, Nature 326, 137–142.

    Article  Google Scholar 

  • McKusick L., Horstman W., and Coates T.J. (1985). AIDS and sexual behavior reported by gay men in San Francisco, Am J Public Health 75, 493–496.

    Article  Google Scholar 

  • Peterman T.A., Drotman D.P. and Curran J.W. (1985). Epidemiology of the acquired immunodeficiency syndrome ( AIDS ), Epidemiologic Reviews 7, 1–21.

    Google Scholar 

  • Peterman T.A., Jaffe H.W., Feorino P.M., Getchall J.P., Warfield D.T., Haverkos H.W., Stoneburner R.L., and Curran J.W. (1985). Transfusion-associated acquired immunodeficiency syndrome in the United States, JAMA 254, 2913–2917.

    Article  Google Scholar 

  • Pickering J., Wiley J.A., Padian N.S., Lieb L.E., Echenberg D.F., and Walker J. (1986). Modeling the incidence of AIDS in San Francisco, Los Angeles and New York, Math Modeling 7, 661–688.

    Google Scholar 

  • Redfield R.R., Wright D.C. and Tramont E.C. (1986). The Walter Reed staging classification for HTLV-III/LAV infection, N Engl J Med 314, 131–132.

    Article  Google Scholar 

  • Sivak S.L. and Wormser G.P. (1985). How common is HTLV—III infection in the United States? Correspondence N Engl J Med 313, 1352.

    Google Scholar 

  • Yorke J.A., Hethcote H.W., and Nold A. (1978). Dynamics and control of the transmission of gonorrhea, Sexually Transmitted Diseases 5, 51–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hethcote, H.W. (1989). A Model for HIV Transmission and AIDS. In: Castillo-Chavez, C., Levin, S.A., Shoemaker, C.A. (eds) Mathematical Approaches to Problems in Resource Management and Epidemiology. Lecture Notes in Biomathematics, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46693-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46693-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51820-4

  • Online ISBN: 978-3-642-46693-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics