Skip to main content

Opioid Receptors and Ion Channels

  • Chapter
Neurobiology of Opioids

Abstract

At least three basic kinds of membrane receptor for transmitters and hormones can now be distinguished. The first type incorporates an ion channel (e.g., nicotinic acetylcholine receptor, γ-aminobutyric acidA receptor, 5-hydroxytryptamine3 receptor); agonist binding greatly increases the probability of channel opening (Fig. 1A). The second kind has an internal domain which binds guanosine 5’-triphosphate (GTP) binding protein (G-protein); agonist binding results in a much increased rate of synthesis of activated G-protein, which then interacts with different cellular effectors (Fig. 1B). The third class itself has enzyme activity on the internal domain, which is altered by agonist binding to an external domain (e.g., insulin and atrial naturietic factor receptors).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature (London) 276: 186–188

    Article  CAS  Google Scholar 

  • Aghajanian GK, Wang YY (1986) Pertussis toxin blocks the outward currents evoked by opiate and a., agonists in locus coeruleus neurones. Brain Res 371: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Charpak S, Dubois-dauphin M. Raggenbass M. Dreifuss JJ (1988) Direct inhibition by opioid peptides of neurones located in the ventromedial nucleus of the guinea pig hypothalamus. Brain Res 450: 124–130

    Article  PubMed  CAS  Google Scholar 

  • Chavkin C, Goldstein A (1984) Opioid receptor reserve in normal and morphine-tolerant guinea-pig ileum myenteric plexus. Proc Natl Acad Sci USA 81: 7253–7257

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E, North RA (1985) Kopioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci USA 82:1860–1863

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E, North RA, Tokimasa T (1988) Action of naloxone on myenteric neurons removed from morphine-treated guinea pigs. J Pharmacol Exp Ther 247: 830–838

    PubMed  CAS  Google Scholar 

  • Christie MJ, North RA (1988a) Agonists at p opioid, M. muscarinic and GABA receptors increase the same potassium conductance in rat lateral parabrachial neurones. Br J Pharmacol 95: 896–902

    CAS  Google Scholar 

  • Christie MJ, North RA (1988b) Cardiac type M., receptors mediate both the muscarinic excitation of locus coeruleus and hyperpolarization of dorsal parabrachial neurones. Trends Phamacol Sci Suppl 89

    Google Scholar 

  • Christie MJ. Williams JT. North RA (1987) Cellular mechanisms of opioid tolerance: studies in single brain neurones. Mol Pharmacol 32: 633–638

    PubMed  CAS  Google Scholar 

  • Dodd J, Horn JP (1983) Muscarinic inhibition of sympathetic C neurones in the bullfrog. J Physiol 334: 271–291

    PubMed  CAS  Google Scholar 

  • Duggan AW, North RA (1984) Electrophysiology of opioids. Pharmacol Rev 35: 219–281

    Google Scholar 

  • Egan TM, North RA (1986) Acetylcholine acts on muscarinic M. receptors to excite rat locus coeruleus neurones. Br J Pharmacol 85: 733–735

    Google Scholar 

  • Egan TM, Henderson G, North RA, Williams JT (1983) Noradrenaline-mediated synaptic inhibition in locus coeruleus neurones. J Physiol 345: 477–488

    PubMed  CAS  Google Scholar 

  • Gill DL, Ueda T, Chueh S-H. Noel MW (1986) Cat’ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature (London) 320: 461–463

    Article  CAS  Google Scholar 

  • Gross RA, Macdonald RL (1987) Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurones in cell culture. Proc Natl Acad Sci USA 84: 5469–5473

    Article  PubMed  CAS  Google Scholar 

  • Hartzell HC, Kuffler SW, Stickgold R, Yoshikami D (1977) Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones. J Physiol 271: 817–846

    PubMed  CAS  Google Scholar 

  • Hescheler J, Rosenthal W. Trautwein W. Schultz G (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature (London) 325: 445–447

    Article  CAS  Google Scholar 

  • Hille B (1984) Ionic channels in excitable membranes. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Hirst GDS, McKirdy HC (1975) Synaptic potentials recorded from some neurones of the submucous plexus of the guinea-pig small intestine. J Physiol 249: 369–385

    PubMed  CAS  Google Scholar 

  • Lacey MG. Mercuri NB. North RA (1989) Two cells types in rat substantia nigra zona compacta distinguished by membrane properties. J Neurosci 9: 1233–1241

    PubMed  CAS  Google Scholar 

  • Macdonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance in mouse dorsal root ganglion neurones. J Physiol 377: 237–250

    PubMed  CAS  Google Scholar 

  • Madison DV, Nicoll RA (1988) Enkephalin hyperpolarizes interneurones in the rat hippocampus. J Physiol 398: 123–130

    PubMed  CAS  Google Scholar 

  • Mihara S. North RA (1986) Opioids increase potassium conductance in guinea-pig submucous plexus neurones by activating 8receptors. Br J Pharmacol 88: 315–322

    PubMed  CAS  Google Scholar 

  • Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Miyake M, Christie MJ, North RA (1989) Single potassium channels opened by opioids in rat locus coeruleus neurones. Proc Natl Acad Sci USA 86: 3419–3422

    Article  PubMed  CAS  Google Scholar 

  • Morita K. North RA (1982) Opiate activation of potassium conductance of myenteric neurones: inhibition by calcium ions. Brain Res 242: 145–150

    Article  PubMed  CAS  Google Scholar 

  • Mudge AW, Leeman SE, Fischbach GD (1979) Enkephalin inhibits release of substance P from sensory neurones in culture and decreases action potential duration. Proc Natl Acad Sci USA 76: 526–530

    Article  PubMed  CAS  Google Scholar 

  • North RA (1986) Opioid receptor types and membrane ion channels. Trends Neurosci 9: 114–117

    Article  CAS  Google Scholar 

  • North RA (1989) Drug receptors and the inhibition of nerve cells. Br J Pharmacol 98: 13–28

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT (1983) How do opiates inhibit neurotransmitter release. Trends Neurosci 6: 337–339

    Article  CAS  Google Scholar 

  • North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol 364: 265–280

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) Sopioid receptors both belong toa family of receptors which couple to a potassium conductance. Proc Natl Acad Sci USA 84: 5487–5491

    Article  PubMed  CAS  Google Scholar 

  • North RA, Surprenant A. Tatsumi H (1988) Potassium conductance increase and calcium conductance decrease both evoked by a, adrenaline and S opioid receptor agonists in the same guinea pig submucous plexus neurones. J Physiol 406: 179 P

    Google Scholar 

  • Pan ZZ, Colmers WF. Williams JT (1989) 5-HT mediated synaptic potentials in the dorsal raphe nucleus: interactions with excitatory amino acid and GABA neurotransmission. J Neurophysiol 62:481–486

    PubMed  CAS  Google Scholar 

  • Pepper CM. Henderson G (1980) Opiates and opioid peptides hyperpolarize locus coeruleus neurones in vitro. Science 209: 394–396

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA 72: 3092–3096

    Article  PubMed  CAS  Google Scholar 

  • Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K’-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 266: 324–334

    Google Scholar 

  • Surprenant A. North RA (1988) Mechanism of synaptic inhibition by noradrenaline acting at a., adrenoceptors. Proc R Soc London Ser B 234: 85–114

    Article  CAS  Google Scholar 

  • Tatsumi H, Costa M, Schimerlik, North RA (1990) Potassium conductance increased by noradrenaline, opioids, somatostatin and G-proteins: whole-cell recording from guinea-pig submucous plexus neurons. J Neurosci (in press)

    Google Scholar 

  • Tsien RW. Lipscombe D. Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11: 431–437

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Harada H, Nozaki M, Katada T. Ui M, Satoh M, Takagi H (1988) Reconstitution of rat brain p opioid receptors with purified guanine nucleotide binding regulatory proteins, G, and G.. Proc Natl Acad Sci USA 85: 7013–7017

    Article  PubMed  CAS  Google Scholar 

  • van Dongen AMJ, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM (1988) Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science 242: 1433–1437

    Article  Google Scholar 

  • Werz MA, Macdonald RL (1983) Opioid peptides with differential affinity for mu and delta receptors decrease sensory neurone calcium-dependent action potentials. J Pharmacol Exp Ther 227: 394–402

    PubMed  CAS  Google Scholar 

  • Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels in mammalian central neurones. Nature (London) 299: 74–76

    Article  CAS  Google Scholar 

  • Williams JT, North RA, Tokimasa T (1988) Inward rectification of resting and receptor-linked potassium currents in rat locus coeruleus neurones. J Neurosci 8: 4299–4306

    PubMed  CAS  Google Scholar 

  • Yoshimura M, Higashi H (1985) 5-Hydroxytryptamine mediates inhibitory postsynaptic potentials in rat dorsal raphe neurones. Neurosci Lett 53:69–74

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, North RA (1983) Substantia gelatinosa neurones in vitro hyperpolarized by enkephalin. Nature (London) 305: 529–530

    Article  CAS  Google Scholar 

  • Zieglgänsberger W, French ED, Siggins GR, Bloom FE (1979) Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 205: 415–417

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

North, R.A. (1991). Opioid Receptors and Ion Channels. In: Almeida, O.F.X., Shippenberg, T.S. (eds) Neurobiology of Opioids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46660-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46660-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46662-5

  • Online ISBN: 978-3-642-46660-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics