Skip to main content

Adaptive Supersensitivity

  • Chapter
Catecholamines I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 1))

Abstract

Over the years, the term supersensitivity has been applied to several phenomena and it was coined long before any of the underlying mechanisms were understood. Given the variety of phenomena to which the term has been applied, Fleming et al. (1973) offered the following definition and explanation of supersensitivity: “Supersensitivity may be defined as the phenomenon in which the amount of a substance required to produce a given biological response is less than ‘normal’, i.e. the dose-response curve is shifted to the left. In a few instances there may also be an increase in the maximum response to a drug. However, this increase in maximal response is not a regular occurrence in supersensitivity. Likewise, supersensitivity may, but need not, be associated with a change in the slope of the dose-response curve. Thus, the one consistent sign of supersensitivity is the shift of the dose-response curve to the left.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel PW, Urquilla PR, Goto K, Westfall DP, Robinson RL, Fleming WW (1981) Chronic reserpine treatment alters sensitivity and membrane potential of the rabbit saphenous artery. J Pharmacol Exp Ther 217: 430–439

    PubMed  CAS  Google Scholar 

  • Adelstein RS (1980) Symposium on phosphorylation of muscle contractile proteins: Introduction. Fedn Proc Fedn Am Socs Exp Biol 39: 1544–1546

    CAS  Google Scholar 

  • Akera T, Brody TM (1977) The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol Rev 29: 187–220

    Google Scholar 

  • Akhtar, R-A, Abdel-Latif AA (1986) Surgical sympathetic denervation increases a,-adrenoceptor-mediated accumulation of myo-inositol triphosphate and muscle contraction in rabbit iris dilator smooth muscle. J Neurochem 46: 96–104

    PubMed  CAS  Google Scholar 

  • Albuquerque EX, Schuh FT, Kauffman FC (1971) Early membrane depolarization of the fast mammalian muscle after denervation. Pflügers Arch ges Physiol 328: 36–50

    CAS  Google Scholar 

  • Albuquerque EX, Warnick JE, Sansone FM, Onur R (1974) The effects of vinblastine and colchicine on neural regulation of muscle. Ann NY Acad Sci 228: 224–243

    PubMed  CAS  Google Scholar 

  • Alm P, Ekström J (1976) Cholinergic nerves of unknown origin in the parotid glands of rats. Arch oral Biol 21: 417–421

    PubMed  CAS  Google Scholar 

  • Antonaccio MJ, Smith CB (1974) Effects of chronic pretreatment with small doses of reserpine upon adrenergic nerve function. J Pharmacol Exp Ther 188: 654–667

    PubMed  CAS  Google Scholar 

  • Aprigliano O, Hermsmeyer K (1977) Trophic influence of the sympathetic nervous sys-tem on the rat portal vein. Circulation Res 41: 198–206

    PubMed  CAS  Google Scholar 

  • Arnett CO, Davis JA (1979) Denervation-induced changes in alpha-and beta-adrenergic receptors of the rat submandibular gland. J Pharmacol Exp Ther 211: 394–400

    PubMed  CAS  Google Scholar 

  • Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184: 1341–1348

    PubMed  CAS  Google Scholar 

  • Axelsson J, Thesleff S (1959) A study of supersensitivity in denervated mammalian skeletal muscle. J (Physiol) Lond 147: 178–193

    CAS  Google Scholar 

  • Baker SP, Potter LT (1980) Effect of propranolol on ß-adrenoceptors in rat hearts. Br J Pharmacol 68: 8–10

    PubMed  CAS  Google Scholar 

  • Berridge MS (1975) The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv Cyclic Nucleotide Res 6: 1–96

    PubMed  CAS  Google Scholar 

  • Besse JC, Furchgott RF (1976) Dissociation constants and relative efficacies of agonists acting on alpha adrenergic receptors in rabbit aorta. J Pharmacol Exp. Ther. 197: 66–78

    Google Scholar 

  • Bird SJ, Aghajanian GK (1975) Denervation supersensitivity in the cholinergic septo-hippocampal pathway: a microiontophoretic study. Brain Res 100: 355–370

    PubMed  CAS  Google Scholar 

  • Bito LZ, Dawson MS (1970) The site and mechanism of the control of cholinergic sen-sitivity. J Pharmacol Exp Ther 175: 673–684

    CAS  Google Scholar 

  • Bito LZ, Dawson MJ, Petrinovic L (1971) Cholinergic sensitivity: normal variability as a function of stimulus background. Science 172: 583–585

    PubMed  CAS  Google Scholar 

  • Bloom FE (1974) To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci 14: 1819–1834

    PubMed  CAS  Google Scholar 

  • Bobik A, Korner P, Carson V, Oliver JR (1980) Cardiac ß-adrenoceptors and adenyl cyclase activity in rabbit heart during conditions of altered sympathetic activity. Circ Res 46, (Suppl I), I-43 to 1–44

    Google Scholar 

  • Bond GH, Clough DL (1973) A soluble protein activator of (Mg2+ + Ca2+)-dependent ATPase in human red cell membranes. Biochim Biophys Acta 323: 592–599

    PubMed  CAS  Google Scholar 

  • Bowen JW, McDonough A (1987) Pretranslational regulation of Na-K-ATPase in cultured canine kidney cells by low K+. Amer J Physiol 252: C179–C189

    PubMed  CAS  Google Scholar 

  • Bray JJ, Hawken MJ, Hubbard JI, Pockett S, Wilson L (1976) The membrane potential of rat diaphragm muscle fibres and the effect of denervation. J Physiol (Lond) 225: 651–667

    Google Scholar 

  • Brody IA (1966) Relaxing factor in denervated muscle: a possible explanation for fibrillations. Amer J Physiol 211: 1277–1280

    PubMed  CAS  Google Scholar 

  • Brostrom CO, Huang Y-C, Breckenridge B McL, Wolff DS (1975) Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc Nat Acad Sci 72: 64–68

    CAS  Google Scholar 

  • Burnstock G (1970) Structure of smooth muscle and its innervation. In: Bülbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle. Williams and Wilkins Baltimore, pp 1–69

    Google Scholar 

  • Burt DR (1978) Muscarinic receptor binding in rat sympathetic ganglia is unaffected by denervation. Brain Res 143: 573–579

    PubMed  CAS  Google Scholar 

  • Caine D, Chase TN, Barbeau A (1975) Dopaminergic mechanisms. Adv Neurology, Vol 9. Raven Press New York

    Google Scholar 

  • Cangiano A, Fried TA (1977) The production of denervation-like changes in rat muscle by colchicine, without interference with axonal transport or muscle activity. J Physiol (Lond) 265: 63–84

    CAS  Google Scholar 

  • Cangiano A, Lutzemberger L, Nicotra L (1977) Non-equivalence of impulse blockade and denervation in the production of membrane changes in rat skeletal muscle. J Physiol (Lond) 273: 691–706

    CAS  Google Scholar 

  • Cannon WB, Rosenblueth A (1949) The supersensitivity of denervated structures. Macmillan New York

    Google Scholar 

  • Carrier O, (1975) Role of calcium in postjunctional supersensitivity. Fedn Proc Fedn Am Socs Exp Biol 34: 1975–1980

    CAS  Google Scholar 

  • Carrier O, Jurevics HA (1973) The role of calcium in “nonspecific” supersensitivity of vascular muscle. J Pharmacol Exp Ther 184: 81–94

    PubMed  CAS  Google Scholar 

  • Carruba MO, Nistico G, Mantegazza P (1979) Evidence for a receptor supersensitivity following impairment of central serotoninergic activity in the rabbit. NaunynSchmiedeberg’s Arch Pharmacol 309: 125–129

    PubMed  CAS  Google Scholar 

  • Cheung WY (1970) Cyclic 3’,5’-Nucleotide phosphodiesterase. Biochem Biophys Res Comm 38: 533–538

    PubMed  CAS  Google Scholar 

  • Cheung WY, Bradham LS, Lynch TJ, Lin YM, Tallant EA (1975) Protein activator of cyclic 3’:5’-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem Biophys Res Comm 66: 1055–1062

    PubMed  CAS  Google Scholar 

  • Cheung WY, Lynch TJ, Wallace RW (1978) An endogenous Ca’-dependent activator protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. Adv Cyclic Nucleotide Res 9: 233–251

    PubMed  CAS  Google Scholar 

  • Clausen T (1986) Regulation of active Na+ — K+ transport in skeletal muscle. Physiol Rev 66: 542–580

    PubMed  CAS  Google Scholar 

  • Cohen SA, Fischbach GD (1973) Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture. Science 181: 76–78

    PubMed  CAS  Google Scholar 

  • Colasanti BK, Hoover DB (1979) Loss of supersensitivity of the cat eye to carbachol at prolonged periods after ciliary ganglionectomy. Fedn Proc Fedn Am Socs Exp Biol 38: 276

    Google Scholar 

  • Colasanti BK, Chiu P, Trotter RR (1978) Adrenergic and cholinergic drug effects on rabbit eyes after sympathetic denervation. Europ J Pharmacol 47: 311–318

    CAS  Google Scholar 

  • Collier HOJ (1966) Tolerance: physical dependence and receptors. Adv Drug Res 3: 171–188

    Google Scholar 

  • Colquhoun D, Rang HP, Ritchie JM (1974) The binding of tetrodotoxin and a-bungarotoxin to normal and denervated mammalian muscle. J Physiol (Lond) 240: 199–226

    CAS  Google Scholar 

  • Courtney KR, Sokolove PG (1979) Importance of electrogenic sodium pump in normal and overdriven sinoatrial pacemaker. J Mol Cell Cardiol 11: 787–794

    PubMed  CAS  Google Scholar 

  • Cowan FF, Wong SK; Westfall DP, Fleming WW (1985) Effect of postganglionic de-nervation and pretreatment with reserpine on alpha adrenoceptors of the guinea-pig vas deferens. Pharmacology 30: 289–295

    Google Scholar 

  • Creese R, El-Shafie AL, Vrbova G (1968) Sodium movements in denervated muscle and the effects of antimycin A. J Physiol (Lond) 197: 279–294

    CAS  Google Scholar 

  • Defelice A, Joiner P (1976) Effects of reserpine on tissue calcium and contractility of rat and rabbit aorta. Canad J Physiol Pharmacol 54: 520–528

    CAS  Google Scholar 

  • Deguchi T, Axelrod J (1973) Supersensitivity and subsensitivity of the ß-adrenergic receptor in pineal gland regulated by catecholamine transmitter. Proc Nat Acad Sci 70: 2411–2414

    PubMed  CAS  Google Scholar 

  • Deshpande SS, Albuquerque EX, Guth L (1976) Neurotrophic regulation of prejunctional and postjunctioual membrane at the mammalian motor endplate. Exp Neurol 53: 151–165

    PubMed  CAS  Google Scholar 

  • Drachman DB (1974) The role of acetylcholine as a neurotrophic transmitter. Ann NY Acad Sci 228: 160–176

    PubMed  CAS  Google Scholar 

  • Drachman DB, Witzke F (1972) Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176: 314–316

    Google Scholar 

  • Dun N, Nishi S, Karczmar AG (1976a) Alteration in nicotinic and muscarinic responses of rabbit superior cervical ganglion cells after chronic preganglionic denervation. Neuropharmacology 15: 211–218

    PubMed  CAS  Google Scholar 

  • Dun N, Nishi S, Karczmar AG (1976b) Electrical properties of denervated mammalian sympathetic ganglion cells. Neuropharmacology 15: 219–223

    PubMed  CAS  Google Scholar 

  • Ekström J, Emmelin N (1974) Reinnervation of the denervated parotid gland of the cat. Q J Exp Physiol 59: 1–9

    Google Scholar 

  • Ekström J, Lindmark B (1978) Choline acetyltransferase activity in post ganglionic parasympathetic nerves after “pharmacological decentralization”. Acta Pharmacol Toxicol 43: 103–110

    Google Scholar 

  • Emmelin N (1961) Supersensitivity following “pharmacological denervation.” Pharmacol Rev 13: 17–37

    CAS  Google Scholar 

  • Emmelin N (1964) Action of acetylcholine on the responsiveness of effector cells. Experientia 15: 275

    Google Scholar 

  • Emmelin N (1965) Action of transmitters on the responsiveness of effector cells. Experientia 21: 57–65

    PubMed  CAS  Google Scholar 

  • Engel J, Liljequist S (1976) The effect of long-term ethanol treatment on the sensitivity of dopamine receptors in the nucleus accumbens. Psychopharmacologia 49: 253–257

    CAS  Google Scholar 

  • Evans RH, Smith JW (1976) The effect of catecholamines on the influx of calcium and the development of tension in denervated mouse diaphragm muscle. Br J Pharmacol 58: 109–116

    PubMed  CAS  Google Scholar 

  • Farrance ML, Vincenzi FF (1977) Enhancement of (Ca” + Mg”)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. H. Dependence on calcium and a cytoplasmic activator. Biochim Biophys Acta 471: 59–66

    Google Scholar 

  • Fedan JS, Westfall DP, Fleming WW (1978a) Species differences in sodium-potassium adenosine triphosphatase activity in the smooth muscle of the guinea pig and rat vas deferens. J Pharmacol Exp Ther 207: 356–363

    PubMed  CAS  Google Scholar 

  • Fedan JS, Westfall DP, Fleming WW (1978b) Ca’ uptake by subcellular fractions of rabbit aorta: effect of treatment of animals with reserpine. The Pharmacologist 20: 226

    Google Scholar 

  • Fedan JS, Westfall DP, Fleming WW (1979) Ca’ release and supernatant effects on Ca” uptake by rabbit aortic microsomes: effect of treatment of animals with reserpine. Fedn. Proc. Fedn. Am. Socs Exp. Biol. 38, 760

    Google Scholar 

  • Fedan JS, Westfall DP, Fleming WW (1980) Potentiation by supernatant of Ca” uptake in rabbit aortic microsomes: effect of pretreatment of animals with re-serpine. Life Sci. 26: 469–474

    PubMed  CAS  Google Scholar 

  • Fischbach GD, Robbins N (1971) Effect of chronic disuse of rat soleus neuromuscular junctions on postsynaptic membrane. J Neurophysiology 34: 562–569

    CAS  Google Scholar 

  • Fleming WW (1962) Supersensitivity of the cat heart to catecholamine-induced ar-rhythmias following reserpine pretreatment. Proc Soc Exp Biol Med 3: 484–486

    Google Scholar 

  • Fleming WW (1963) A comparative study of supersensitivity to norepinephrine and acetylcholine produced by denervation, decentralization and reserpine J Pharma-col Exp Ther 141: 173–179

    CAS  Google Scholar 

  • Fleming WW (1968) Nonspecific supersensitivity of the guinea-pig ileum produced by chronic ganglion blockade. J Pharmacol Exp Ther 162: 277–285

    PubMed  CAS  Google Scholar 

  • Fleming WW (1971) Supersensitivity of the denervated rat diaphragm to potassium: a comparison with supersensitivity in other tissues. J Pharmacol Exp Ther 176: 160–166

    PubMed  CAS  Google Scholar 

  • Fleming WW (1975) Supersensitivity in smooth muscle. Introduction and historical perspective. Fedn Proc Fedn Am Socs Exp Biol 34: 1969–1970

    CAS  Google Scholar 

  • Fleming WW (1976) Variable sensitivity of excitable cells: possible mechanisms and biological significance. Rev Neuroscience 2: 43–90

    CAS  Google Scholar 

  • Fleming WW (1980) The electrogenic Nat, K+-pump in smooth muscle: physiologic and pharmacologic significance. Ann Rev Pharmacol 20: 129–149

    CAS  Google Scholar 

  • Fleming WW (1984) A review of postjunctional supersensitivity in cardiac muscle. In: Fleming WW, Graefe K-H, Langer SZ, Weiner N (eds) Neuronal and Extraneuronal Events in Autonomic Pharmacology. Raven Press New York pp 205–219

    Google Scholar 

  • Fleming WW, Trendelenburg U (1961) The development of supersensitivity to norepi- nephrine after pretreatment with reserpine. J Pharmacol Exp Ther 133: 41–51

    PubMed  CAS  Google Scholar 

  • Fleming WW, Westfall DP (1975) Altered resting membrane potential in the supersensitive vas deferens of the guinea-pig. J Pharmacol Exp Ther 192: 381–389

    PubMed  CAS  Google Scholar 

  • Fleming WW, McPhillips JJ, Westfall DP (1973) Postjunctional supersensitivity and subsensitivity of excitable tissues to drugs. Rev Physiol Biochem Pharmacol 68: 56–119

    Google Scholar 

  • French SW, Palmer DS, Narod ME, Reid PE, Ramey CW (1975) Noradrenergic sensitivity of the cerebral cortex after chronic ethanol ingestion and withdrawal. J Pharmacol Exp Ther 194: 319–326

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of ß-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In: Harper NJ, Simmons AB (eds) Advances in Drug Research, 3. Academic Press London, pp 21–55

    Google Scholar 

  • Garrett RL, Carrier 0 (1971) Alteration of extracellular calcium dependence in vascular tissue by reserpine. Europ J Pharmacol 13: 306–311

    CAS  Google Scholar 

  • Gerthoffer WT, Fedan JS, Westfall DP, Goto K, Fleming WW (1979) Involvement of the sodium-potassium pump in the mechanism of postjunctional supersensitivity of the vas deferens of the guinea-pig. J Pharmacol Exp Ther 210: 27–36

    PubMed  CAS  Google Scholar 

  • Gianutsos G, Hynes MD, Puri SK, Drawbaugh RB, Lal H (1974) Effect of apomorphine and nigrostriatal lesions on aggression and striatal dopamine turnover during morphine withdrawal: evidence for dopaminergic supersensitivity in protracted abstinence. Psychopharmacologia 34: 37–44

    PubMed  CAS  Google Scholar 

  • Gilliatt RW, Westgaard RH, Williams IR (1978) Extrajunctional acetylcholine sensitivity of inactive muscle fibres in the baboon during prolonged nerve pressure block. J Physiol (Lond) 280: 499–514

    CAS  Google Scholar 

  • Glaubiger G, Lefkowitz RJ (1977) Elevated beta-adrenergic receptor number after chronic propranolol treatment. Biochim Biophys Acta 78: 720–725

    CAS  Google Scholar 

  • Glaubiger G, Tsai BS, Lefkowitz RJ, Weiss B, Johnson EM (1978) Chronic guanethi- dine treatment increases cardiac ß-adrenergic receptors. Nature 273: 240–242

    PubMed  CAS  Google Scholar 

  • Gnegy ME, Luchelli A, Costa E (1977a) Correlation between drug-induced supersensitivity of dopamine dependent striatal mechanisms and the increase in striatal content of the Ca’ regulated protein activator of cAMP phosphodiesterase. NaunynSchmiedeberg’s Arch Pharmacol 301: 121–127

    PubMed  CAS  Google Scholar 

  • Gnegy M, Lislinov P, Costa E (1977b) Participation of an endogenous Ca”-binding protein activator in the development of drug-induced supersensitivity of striatal dopamine receptors. J Pharmacol Exp Ther 202: 558–564

    PubMed  CAS  Google Scholar 

  • Goto K (1980) Electrophysiological analysis of colchicine-induced supersensitivity in the rat vas deferens. J Physiol (Lond) 308: 465–477

    CAS  Google Scholar 

  • Goto K (1983) Postjunctional supersensitivity of the smooth muscle of the rat vas deferens induced by calmodulin-antagonizing drugs applied locally to the hypogastric plexus. J Pharmacol Exp Ther 224: 231–238

    PubMed  CAS  Google Scholar 

  • Goto K, Masuda Y, Kasuya Y (1976) The effect of denervation in the synchronization of contraction of the rat vas deferens. Europ J Pharmacol 36: 395–404

    CAS  Google Scholar 

  • Goto K, Westfall DP, Fleming WW (1978) Denervation-induced changes in electrophysiologic parameters of the smooth muscle of the guinea-pig and rat vas defer-ens. J Pharmacol Exp Ther 204: 325–333

    PubMed  CAS  Google Scholar 

  • Goto K, Masaki T, Saito A, Kasuya Y (1979) Denervation-like supersensitivity in the rat vas deferens induced by local application of colchicine to the hypogastric plexus. J Pharmacol Exp Ther 209: 376–381

    PubMed  CAS  Google Scholar 

  • Goto K, Longhurst PA, Cassis LA, Head RJ, Taylor DA, Rice PJ, Fleming WW (1985) Surgical sympathectomy of the heart in rodents and its effect on sensitivity to agonists. J Pharmacol Exp Ther 234: 280–287

    PubMed  CAS  Google Scholar 

  • Gruener R, Baumbach N, Coffee D (1974) Reduction of denervation supersensitivity of muscle by submechanical threshold stimulation. Nature, Lond 248: 68–69

    Google Scholar 

  • Guth L (1968) “Trophic” influences of nerve on muscle. Physiol Rev 48:645–681

    Google Scholar 

  • Gutmann E (1976) Problems in differentiating trophic relationships between nerve and muscle cells. In: Thesleff S (ed) Motor Innervation of Muscle. Academic Press London, pp 323–343

    Google Scholar 

  • Gutmann E, Honik P (1963) The effect of use and disuse on neuromuscular functions. Elsevier Amsterdam

    Google Scholar 

  • Gutmann E, Sandow A (1965) Caffeine-induced contracture and potentiation of contraction in normal and denervated rat muscle. Life Sci 4: 1149–1156

    PubMed  CAS  Google Scholar 

  • Hata F, Takeyasu K, Morikawa Y, Lai R-T, Ishida H, Yoshida H (1980) Specific changes in the cholinergic system in guinea-pig vas deferens after denervation. J Pharmacol Exp Ther 215: 716–722

    PubMed  CAS  Google Scholar 

  • Hawthorn MH, Broadley KJ (1982) ß-Adrenoceptor ligand binding and supersensitivity to isoprenaline of ventricular muscle after chronic reserpine pretreatment. Naunyn-Schmiedeberg’s Arch. Pharmacol 320: 240–245

    Google Scholar 

  • Hedlund B, Abens J, Barfai T (1983) Vasoactive intestinal polypeptide and muscarinic receptors: supersensitivity induced by long-term atropine treatment. Science 220: 519–521

    PubMed  CAS  Google Scholar 

  • Hinds TR, Larsen FL, Vincenzi FF (1978) Plasma membrane Ca’ transport: stimulation by soluble proteins. Biochem Biophys Res Comm 81: 455–461

    PubMed  CAS  Google Scholar 

  • Hofmann WW, Thesleff S (1972) Studies on the trophic influence of nerve on skeletal muscle. Europ J Pharmacol 20: 256–260

    CAS  Google Scholar 

  • Hogaboom GK, Fedan JS (1981) Calmodulin stimulation of calcium uptake and (Ca”, Mgz+)_ATPase activities in microsomes from canine tracheal smooth muscle. Biochem Biophys Res Comm 99: 737–744

    Google Scholar 

  • Howell JN, Fairhurst AS, Jenden DJ (1966) Alterations on the calcium accumulating ability of striated muscle following denervation. Life Sci 5: 439–446

    PubMed  CAS  Google Scholar 

  • Hsu CY, Leighton HJ, Westfall TC, Brooker G (1976) Enhancement of methacholinestimulated guanosine 3’:5’-cyclic monophosphate formation in supersensitive guinea-pig vasa deferentia. J Cyclic Nucleotide Res 2: 359–364

    PubMed  CAS  Google Scholar 

  • Hudgins PM, Fleming WW (1966) A relatively nonspecific supersensitivity in aortic strips resulting from pretreatment with reserpine. J Pharmacol Exp Ther 153: 70–80

    PubMed  CAS  Google Scholar 

  • Hudgins PM, Harris TM (1970) Further studies on the effects of reserpine pretreatment on rabbit aorta: calcium and histologic changes. J Pharmacol Exp Ther 175: 609–618

    PubMed  CAS  Google Scholar 

  • Isaacson A, Sandow A (1967) Caffeine effects on radiocalcium movement in normal and denervated rat skeletal muscle. J Pharmacol Exp Ther 155: 376–388

    PubMed  CAS  Google Scholar 

  • Iwayama T, Fleming WW, Burnstock G (1973) Ultrastructure of mitochondria in atrial muscle associated with depression and supersensitivity produced by reserpine. J Pharmacol Exp Ther 184: 95–105

    PubMed  CAS  Google Scholar 

  • Johns TR, Thesleff S (1961) Effects of motor inactivation on the chemical sensitivity of skeletal muscle. Acta Physiol Scand 51: 136–141

    PubMed  CAS  Google Scholar 

  • Johnson SM, Westfall DP, Howard SA, Fleming WW (1978) Sensitivities of the isolated ileal longitudinal smooth muscle-myenteric plexus and hypogastric nerve-vas deferens of the guinea pig after chronic morphine pellet implantation. J Pharmacol Exp Ther 204: 54–66

    PubMed  CAS  Google Scholar 

  • Kakiuchi S, Yamazaki R (1970) Calcium dependent phosphodiesterase activity and its activating factor from brain. Biochem Biophys Res Comm 41: 1104–1110

    PubMed  CAS  Google Scholar 

  • Karlsen RL (1978) Muscarinic receptor binding and the effect of atropine on the gui-nea-pig iris. Exp Eye Res 27: 577–581

    PubMed  CAS  Google Scholar 

  • Kasuya Y, Goto K, Hashimoto H, Watanabe H, Munakata H, Watanabe M (1969) Nonspecific denervation supersensitivity in the rat vas deferens “in vitro”. Europ J Pharmacol 8: 177–184

    CAS  Google Scholar 

  • Katz S, Remtulla MA (1978) Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum. Biochem Biophys Res Comm 83: 1373–1379

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Zatz M, Romero JA, Axelrod J (1975) Rapid changes in rat pineal ß-adrenergic receptor: alterations in 1-[3H]alprenolol binding and adenylate cyclase. Proc Natn Acad Sci 72: 3735–3739

    CAS  Google Scholar 

  • Klawans HL, d’Amico DS, Patel BC (1975) Behavioral supersensitivity to 5-hydroxytryptophan induced by chronic methysergide pretreatment. Psychopharmacologia 44: 297–300

    PubMed  CAS  Google Scholar 

  • Klawans HL, d’Amico DJ, Nausieda PA, Weiner WS (1977) The specificity of neuroleptic-and methysergide-induced behavioral hypersensitivity. Psychopharmacology 55: 49–52

    PubMed  CAS  Google Scholar 

  • Ko PK, Anderson MJ, Cohen MW (1977) Denervated skeletal muscle fibers develop discrete patches of high acetylcholine receptor density. Science 196: 540–542

    PubMed  CAS  Google Scholar 

  • Kroeger EA, Teo TS, Ho H, Wang JH (1977) Relaxants, cyclic adenosine 3’:5’-monophosphate, and calcium metabolism in smooth muscle. In: Stephens NL (ed) The Biochemistry of Smooth Muscle. University Park Press Baltimore

    Google Scholar 

  • Langer GA, Serena SD, Nudd LM (1975) Localization of contractile-dependent calcium: comparison of manganese and verapamil in cardiac and skeletal muscle. Amer J Physiol 229: 1003–1008

    PubMed  CAS  Google Scholar 

  • Langer SZ, Draskoczy PR, Trendelenburg U (1967) Time course of the development of supersensitivity to various amines in the nictitating membrane of the pithed cat af-ter denervation or decentralization. J Pharmacol Exp Ther 157: 255–273

    PubMed  CAS  Google Scholar 

  • Lee TJ-F, Westfall DP, Fleming WW (1975) The correlation between spontaneous con-tractions and postjunctional supersensitivity of the smooth muscle of the rat vas deferens. J Pharmacol Exp Ther 192: 136–148

    PubMed  CAS  Google Scholar 

  • Locke S, Solomon HC (1967) Relation of resting potential of rat gastrocnemius and soleus muscles to innervation, activity and the Na-K pump. J Exp Zool 166: 377–386

    PubMed  CAS  Google Scholar 

  • Lömo T (1976) The role of activity in the control of membrane and contractile properties of skeletal muscle. In: Thesleff S (ed) Motor Innervation of Muscle. Academic Press London, pp 289–321

    Google Scholar 

  • Lömo T, Rosenthal J (1972) Control of ACH sensitivity by muscle activity in the rat. J Physiol (Lond) 221: 493–513

    Google Scholar 

  • Liimo T, Slater CR (1978) Control of acetylcholine sensitivity and synapse formation by muscle activity. J Physiol (Lond) 275: 391–402

    Google Scholar 

  • Lorkovic H, Tomanek RJ (1977) Potassium and chloride conductances in normal and denervated rat muscles. Amer J Physiol 232: C109–C114

    PubMed  CAS  Google Scholar 

  • Luchelli A, Guidotti A, Costa E (1978) Striatal content of Cat -dependent regulator protein and dopaminergic receptor function. Brain Res 155: 130–135

    Google Scholar 

  • Luco SV, Vera C (1964) Sensitivity to acetylcholine of the nicititating membrane rein-nervated by cholinergic fibers. Acta Physiol Lat Amer 14: 289–294

    PubMed  CAS  Google Scholar 

  • Lüllmann H, Preuner J, Sunano S (1974) On the interaction of acetylcholine, caffeine and altered Ca-concentrations upon the excitation-contraction coupling in chronically denervated skeletal muscle. Pflügers Arch 352: 279–290

    PubMed  Google Scholar 

  • Marshall JF, Ungerstedt U (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Europ J Pharmacol 41: 361–367

    CAS  Google Scholar 

  • Martinez JR, Quissel DO (1977) Potassium release from the rat submaxillary gland in vitro. III. Effects of pretreatment with reserpine. J Pharmacol Exp Ther 201: 206–217

    Google Scholar 

  • Mathers DA, Thesleff S (1978) Studies on neurotrophic regulation of murine skeletal muscle. J Physiol (Lond) 282: 105–114

    CAS  Google Scholar 

  • McArdle JJ, Albuquerque EX (1975) Effects of ouabain on denervated and dystrophic muscles of the mouse. Exp Neurol 47: 353–356

    PubMed  CAS  Google Scholar 

  • McConnell MG, Simpson LL (1976) The role of acetylcholine receptors and acetyl-cholinesterase activity in the development of denervation supersensitivity. J Pharmacol Exp Ther 198: 507–517

    PubMed  CAS  Google Scholar 

  • Miledi R (1960) Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibers. J Physiol (Lond) 151: 24–30

    CAS  Google Scholar 

  • Mrwa U, Hartshorne DJ (1980) Symposium on phosphorylation of muscle contractile proteins: phosphorylation of smooth muscle myosin and myosin light chains. Fedn Proc Fedn Am Socs Exp Biol 39: 1564–1568

    CAS  Google Scholar 

  • Mulvany MJ, Nilsson H, Flatman JA (1982) Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol (Lond) 332: 363–373

    CAS  Google Scholar 

  • Neidle EA (1950) Pilocarpine sensitization in the parasympathetically denervated pupil of the cat. Amer J Physiol 160: 467–473

    PubMed  CAS  Google Scholar 

  • Noble D (1979) The initiation of the heartbeat. Oxford: Clarendon Press

    Google Scholar 

  • Overstreet DH, Kozar MD, Lynch GS (1973) Reduced hypothermic effects of cholin-omimetic agents following chronic anticholinesterase treatment. Neuropharmacol-ogy 12: 1017–1032

    CAS  Google Scholar 

  • Overstreet DH, Yamamura HI (1979) Receptor alterations and drug tolerance. Life Sci 25: 1865–1878

    PubMed  CAS  Google Scholar 

  • Page ED, Neufeld AH (1978) Characterization of a-and ß-adrenergic receptors in membranes prepared from rabbit iris before and after development of supersensitivity. Biochem Pharmacol 27: 953–958

    PubMed  CAS  Google Scholar 

  • Palmer GC, Spurgeon HA, Priola DV (1975) Involvement of adenylate cyclase in mechanisms of denervation supersensitivity following surgical denervation of the dog heart. J Cyclic Nucleotide Res 1: 89–95

    PubMed  CAS  Google Scholar 

  • Perec CJ, Stefano FJE, Barrio Rendo ME (1973) Long-lasting supersensitivity after 6-hydroxydopamine in the submaxillary gland of the rat. J Pharmacol Exp Ther 186: 220–229

    PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman DB, Griffin JW (1976) Effect of botulinum toxin on trophic regulation of acetylcholine receptors. Nature 264: 787–789

    PubMed  CAS  Google Scholar 

  • Ramos K, Gerthoffer WT, Westfall DP (1984) Atypical calcium sensitivity of chemically skinned smooth muscle of the guinea pig vas deferens. Proc West Pharmacol Soc 27: 387–389

    PubMed  CAS  Google Scholar 

  • Reas HW, Trendelenburg U (1967) Changes in the sensitivity of the sweat glands of the cat after denervation. J Pharmacol Exp Ther 156: 126–136

    PubMed  CAS  Google Scholar 

  • Redfern P, Thesleff S (1971) Action potential generation in denervated rat skeletal muscle. I. Quantitative aspects. Acta Physiol Scand 81: 557–564

    Google Scholar 

  • Robbins N (1977) Cation movements in normal and short term denervated rat fast twitch muscle. J Physiol (Lond) 271: 605–646

    CAS  Google Scholar 

  • Ruffolo RRJR, Rosing EL, Waddell JR (1979) Receptor interactions of imidazolines. I. Affinity and efficacy for alpha adrenergic receptors in rat aorta. J Pharmacol Exp Ther 209: 429–436

    Google Scholar 

  • Russell RW, Overstreet DH (1987) Mechanisms underlying sensitivity to organophosphorus anticholinesterase compounds. Prog Neurobiol 28: 97–129

    PubMed  CAS  Google Scholar 

  • Sachs DI, Kloog Y, Korezyn AD, Heron DS, Sokolusk VM (1979) Denervation, super-sensitivity and muscarinic receptors in the cat iris. Biochem Pharmacol 28: 1513–1518

    PubMed  CAS  Google Scholar 

  • Schulz JC, Fleming WW, Westfall DP, Millecchia R (1984) Cellular potentials, electrogenic sodium pumping and sensitivity in guinea-pig atria. J Pharmacol Exp Ther, 231: 181–188

    PubMed  CAS  Google Scholar 

  • Schulz R, Goldstein A (1973) Morphine tolerance and supersensitivity to 5-hydroxy-tryptamine in the myenteric plexus of the guinea-pig. Nature 244: 168–170

    PubMed  CAS  Google Scholar 

  • Schulz R, Herz A (1976) Aspects of opiate dependence in the myenteric plexus of the guinea-pig. Life Sci 19: 1117–1128

    PubMed  CAS  Google Scholar 

  • Schultz G, Hardman JG, Schultz K, Baird CE, Sutherland EW (1973) The importance of calcium ions for the regulation of guanosine 3’:5’-cyclic monophosphate levels. Proc Natn Acad Sci 70: 3889–3893

    CAS  Google Scholar 

  • Schwarcz R, Fuxe K, Agnati LF, Hökfelt T, Coyle JT (1979) Rotational behavior in rats with unilateral striatal kainic acid lesions: a behavioral model for studies on intact dopamine receptors. Brain Res 170: 485–495

    PubMed  CAS  Google Scholar 

  • Schwartz JC, Costentin J, Martires MP, Protais P, Baudry M (1978) Modulation of receptor mechanisms in the CNS: hyper-and hyposensitivity to catecholamines. Neuropharmacology 17: 665–685

    PubMed  CAS  Google Scholar 

  • Segal M (1977) Supersensitivity of hippocampal neurons to acidic amino acids in decomissurized rats. Brain Res 119: 476–479

    PubMed  CAS  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    PubMed  CAS  Google Scholar 

  • Sellin LC, McArdle JJ (1977a) Colchicine blocks neurotrophic regulation of the resting membrane potential in reinnervating skeletal muscle. Exp Neurol 55: 483–492

    PubMed  CAS  Google Scholar 

  • Sellin LC, McArdle JJ (1977b) Effect of ouabain on reinnervating mammalian skeletal muscle. Europ J Pharmacol 41: 337–340

    CAS  Google Scholar 

  • Sellin LC, Thesleff S (1980) Alterations in membrane electrical properties during longterm denervation of rat skeletal muscle. Acta Physiol Scand 108: 243–246

    PubMed  CAS  Google Scholar 

  • Sharma VK, Banerjee SP (1977) The effect of 6-hydroxydopamine on specific 3H-ouabain binding to some sympathetically innervated organs of the cat. Mol Pharmacol 13: 796–804

    PubMed  CAS  Google Scholar 

  • Sharma VK, Banerjee SP (1979) Regeneration of [3H]ouabain binding to (Na+—K+)-ATPase in chemically sympathectomized cat peripheral organs Mol Pharmacol 15: 35–42

    CAS  Google Scholar 

  • Sharpless SK (1964) Reorganization of function in the nervous system — use and disuse. Ann Rev Physiol 26: 357–388

    CAS  Google Scholar 

  • Sharpless SK (1969) Isolated and deafferented neurons: disuse supersensitivity. In: Jasper RH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies Little Brown Boston, pp 329–348

    Google Scholar 

  • Simeone FA (1937) The effect of regeneration of the nerve supply on the sensitivity of the denervated nictitating membrane to adrenine. Amer J Physiol 120: 466–474

    CAS  Google Scholar 

  • Simpson LL (1977) The effects of acute and chronic botulinum toxin treatment on receptor number, receptor distribution and tissue sensitivity in rat diaphragm. J Pharmacol Exp Ther 200: 343–351

    PubMed  CAS  Google Scholar 

  • Skirboll LR, Bunney BS (1979) The effects of acute and chronic haloperidol treatment on spontaneously firing neurons in the caudate nucleus of the rat. Life Sci 26: 1419–1434

    Google Scholar 

  • Skolnick P, Daly JW (1975) Stimulation of adenosine 3’,5’-monophosphate formation in rat cerebral cortical slices by methoxamine interaction with an alpha-adrenergic receptor. J Pharmacol Exp Ther 193: 549–558

    PubMed  CAS  Google Scholar 

  • Stanley EF Drachman DB (1979) Effect of disuse on the resting membrane potential of skeletal muscle. Exp Neurol 64: 231–234

    PubMed  CAS  Google Scholar 

  • Stavraky GW (1961) Supersensitivity following lesions of the nervous system. University of Toronto Press Toronto

    Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Brit J Pharmacol 11: 379–393

    PubMed  CAS  Google Scholar 

  • Strada SJ, Weiss B (1974) Increased response to catecholamines of the cyclic AMP system of rat pineal gland induced by decreased sympathetic activity. Arch Biochem Biophys 160: 197–204

    PubMed  CAS  Google Scholar 

  • Swann AC, Grant SJ, Mass JW (1982) Brain (Nat, K+)-ATPase and noradrenergic activity: effects of hyper-innervation and denervation on high-affinity ouabain binding. J Neurochem 38: 836–839

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Hoffman PL (1979) Development of functional dependence on ethanol in dopaminergic systems. J Pharmacol Exp Ther 208: 216–222

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Munoz-Marcus M, Fields JZ (1979) Chronic ethanol feeding produces an increase in muscarinic cholinergic receptors in mouse brain. Life Sci 25: 2173–2180

    PubMed  CAS  Google Scholar 

  • Takenawa T, Masaki T, Goto K (1983) Increase in norepinephrine-induced formation of phosphatidic acid in rat vas deferens after denervation. J Biochem 93: 303–306

    PubMed  CAS  Google Scholar 

  • Talamo BR, Adler SC, Burt DR (1979) Parasympathetic denervation decreases muscarinic receptor binding in rat parotid. Life Sci 24: 1573–1580

    PubMed  CAS  Google Scholar 

  • Taylor DA, Westfall DP, de Moraes S, Fleming WW (1976) The effect of pretreatment with reserpine on the diastolic potential of guinea-pig atrial cells. NaunynSchmiedeberg’s Arch Pharmacol 293: 81–87

    PubMed  CAS  Google Scholar 

  • Tenner TE (1983) Propranolol withdrawal supersensitivity in rat cardiovascular tissue, in vitro. Europ J Pharmacol 92: 91–97

    CAS  Google Scholar 

  • Tenner TE, McNeill JH, Carrier 0 (1978) The role of calcium in supersensitivity to the inotropic effects of norepinephrine. Europ J Pharmacol 50: 359–367

    CAS  Google Scholar 

  • Tenner TE, Mukherjee A, Hester RK (1982) Reserpine-induced supersensitivity and the proliferation of cardiac ß-adrenoceptors. Europ J Pharmacol 77: 61–65

    CAS  Google Scholar 

  • Thesleff S (1960) Effects of motor innervation on the chemical sensitivity of skeletal muscle. Physiol Rev 40: 734–752

    PubMed  CAS  Google Scholar 

  • Thesleff S (1973) Functional properties of receptors in striated muscle. In: Rang HP (ed) Drug Receptors. University Park Press Baltimore, pp 121–133

    Google Scholar 

  • Thesleff S (1974) Physiological effects of denervation of muscle. Ann NY Acad Sci 228: 89–103

    PubMed  CAS  Google Scholar 

  • Thesleff S, Ward MR (1975) Studies on the mechanism of fibrillation potentials in denervated muscle. J Physiol (Lond) 244: 313–323

    CAS  Google Scholar 

  • Thomas RC (1972) Electrogenic sodium pump in nerve and muscle cells. Physiol Rev 52: 563–594

    PubMed  CAS  Google Scholar 

  • Thornburg JE, Moore KE (1975) Supersensitivity to dopamine agonists following unilateral 6-hydroxydopamine-induced striatal lesions in mice. J Pharmacol Exp Ther 192: 42–49

    PubMed  CAS  Google Scholar 

  • Tiedt TN, Albuquerque EX, Guth L (1977) Degenerating nerve fiber products do not alter physiological properties of adjacent innervated skeletal muscle fibers. Science 198: 839–841

    PubMed  CAS  Google Scholar 

  • Torphy TJ, Westfall DP, Fleming WW (1982) Effect of reserpine pretreatment on mechanical responsiveness and [125I]-iodohydroxybenzylpindolol binding sites in the guinea-pig right atrium. J Pharmacol Exp Ther 223: 332–341

    PubMed  CAS  Google Scholar 

  • Trendelenburg U (1963) Supersensitivity and subsensitivity to sympathomimetic amines Pharmac Rev 15: 225–276

    CAS  Google Scholar 

  • Trendelenburg U (1966) Mechanisms of supersensitivity and subsensitivity to sympathomimetic amines Pharmacol Rev 18: 629–640

    CAS  Google Scholar 

  • Trendelenburg U (1986) The metabolizing systems involved in the inactivation of catecholamines. Naunyn-Schmiedeberg’s Arch. Pharmacol 332: 201–207

    CAS  Google Scholar 

  • Trendelenburg U, Graefe K-H (1975) Symposium on supersensitivity in smooth muscle: supersensitivity to catecholamines after impairment of extraneuronal uptake or catechol-0-methyl transferase. Fedn Proc Fedn Am Soc Exp Biol 34: 1971–1974

    CAS  Google Scholar 

  • Trendelenburg U, Maxwell RA, Pluchino S (1970) Methoxamine as a tool to assess the importance of intraneuronal uptake of 1-norepinephrine in the cat’s nictitating membrane. J Pharmacol Exp Ther 172: 91–99

    PubMed  CAS  Google Scholar 

  • Trulson ME, Eubanks EE, Jacobs BL (1976) Behavioral evidence for supersensitivity following destruction of central serotonergic nerve terminals by 5,7-dihydroxytryptamine. J Pharmacol Exp Ther 198: 23–32

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of nigro-striatal dopamine system. Acta Physiol Scand 82 Suppl 367: 69–93

    CAS  Google Scholar 

  • Ungerstedt U, Ljünberg T, Schultz W (1978) Dopamine receptor mechanisms: behavioral and electrophysiological studies. Adv Biochem Psychopharmacol 19: 311–321

    PubMed  CAS  Google Scholar 

  • Urquilla PR, Westfall DP, Goto K, Fleming WW (1978) The effects of ouabain and alterations in potassium concentration on the sensitivity to drugs and the membrane potential of the smooth muscle of the guinea-pig and rat vas deferens. J Pharmacol Exp Ther 207: 347–355

    PubMed  CAS  Google Scholar 

  • Urquilla PR, Jones AW, Fleming WW (1980) Effects of sympathetic denervation or chronic reserpine on potassium (42K) and chloride (36C1) efflux from guinea pig vas deferens. Europ J Pharmacol 66: 11–19

    CAS  Google Scholar 

  • Von Voigtlander PF, Losey EG, Triezenberg HJ (1975) Increased sensibility to dopaminergic agents after chronic neuroleptic treatments. J Pharmacol Exp Ther 193: 88–94

    Google Scholar 

  • Wang RY, Montigny C de, Gold BI, Roth RH, Aghajanian GK (1979) Denervation supersensitivity to serotonin in rat forebrain: single cell studies. Brain Res 178: 479–497

    PubMed  CAS  Google Scholar 

  • Weiss B (1969) Effects of environmental lighting and chronic denervation on the activation of adenyl cyclase of rat pineal gland by norepinephrine and sodium fluoride. J Pharmacol Exp Ther 168: 146–152

    PubMed  CAS  Google Scholar 

  • Weiss B, Costa E (1967) Adenyl cyclase activity in rat pineal gland: effects of chronic denervation and norepinephrine. Science 156: 1750–1752

    PubMed  CAS  Google Scholar 

  • Weiss B, Strada SJ (1972) Neuroendocrine control of the cyclic AMP system of brain and pineal gland. Adv Cyclic Nucleotide Res 1: 357–374

    PubMed  CAS  Google Scholar 

  • Westfall DP (1970a) Nonspecific supersensitivity of the guinea-pig vas deferens pro- duced by decentralization and reserpine treatment. Br J Pharmacol 39: 110–120

    PubMed  CAS  Google Scholar 

  • Westfall DP (1970b) The effect of reserpine treatment and decentralization on the ion distribution in the vas deferens of the guinea-pig. Br J Pharmacol 39: 121–127

    PubMed  CAS  Google Scholar 

  • Westfall DP (1977) The effects of denervation, cocaine, 6-hydroxydopamine and reserpine on the characteristics of drug-induced contractions of the depolarized smooth muscle of the rat and guinea-pig vas deferens. J Pharmacol Exp Ther 201: 267–275

    PubMed  CAS  Google Scholar 

  • Westfall DP (1981) Supersensitivity of smooth muscle. In: Bülbring E, Brading A, Jones F, Tornita T (eds) Smooth Muscle: An assessment of current knowledge. Arnold Ltd London, pp 285–310

    Google Scholar 

  • Westfall DP, Fedan JS (1975) The effect of pretreatment with 6-hydroxydopamine on the norepinephrine concentration and sensitivity of the rat vas deferens. Europ J Pharmacol 33: 413–417

    CAS  Google Scholar 

  • Westfall DP, Fleming WW (1968a) Sensitivity changes in the dog heart to norepinephrine, calcium and aminophylline resulting from pretreatment with reserpine. J Pharmacol Exp Ther 159: 98–106

    PubMed  CAS  Google Scholar 

  • Westfall DP, Fleming WW (1968b) The sensitivity of the guinea-pig pacemaker to nor-epinephrine and calcium after pretreatment with reserpine. J Pharmacol Exp Ther 164: 259–269

    PubMed  CAS  Google Scholar 

  • Westfall DP, McClure DC, Fleming WW (1972) The effects of denervation, decentralization and cocaine on the response of the smooth muscle of the guinea-pig vas deferens to various drugs. J Pharmacol Exp Ther 181: 328–338

    PubMed  CAS  Google Scholar 

  • Westfall DP, McPhillips JJ, Foley DJ (1974) Inhibition of cholinesterase activity after postganglionic denervation of the rat vas deferens: evidence for prejunctional supersensitivity to acetylcholine. J Pharmacol Exp Ther 189: 493–498

    PubMed  CAS  Google Scholar 

  • Westfall DP, Goto K, Stitzel RE, Fedan JS, Fleming WW (1975) Effects of various de-nervation techniques on the ATP of the rat vas deferens. Europ J Pharmacol 34: 397–400

    CAS  Google Scholar 

  • Westfall DP, Millecchia LL, Lee TJ-F, Corey SP, Smith DJ, Fleming WW (1977) Effect of denervation and reserpine on nexuses in the rat vas deferens. Europ J Pharmacol 41: 239–242

    CAS  Google Scholar 

  • Westfall DP, Wong SK, Fleming WW (1981) An increase in the number of Na-K pump sites in corpus striatum following chronic treatment of rats with neuroleptics. Abst VIII International Congress of Pharmacology, p 474

    Google Scholar 

  • Wong SK, Westfall DP, Fedan JS, Fleming WW (1981) The involvement of the sodium-potassium pump in postjunctional supersensitivity of the guinea-pig vas deferens as assessed by [3H] ouabain binding. J Pharmacol Exp Ther 219: 163–169

    PubMed  CAS  Google Scholar 

  • Wood EH, Heppner RL, Weidmann J (1969) I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypothesis: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res 24: 409–445

    PubMed  CAS  Google Scholar 

  • Yarbrough GG (1975) Supersensitivity of caudate neurons after repeated administration of haloperidol. Europ J Pharmacol 31: 367–369

    CAS  Google Scholar 

  • Yousufzai SYK, Abdel-Latif AA (1986) alphas-Adrenergic receptor induced subsensitivity and supersensitivity in rabbit iris-ciliary body. Invest Ophthalmol Vis Sci 28: 409–419

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fleming, W., Westfall, D.P. (1988). Adaptive Supersensitivity. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines I. Handbook of Experimental Pharmacology, vol 90 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46625-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46625-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46627-4

  • Online ISBN: 978-3-642-46625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics