Skip to main content

Mass Transport by Diffusion

  • Chapter

Abstract

Since diffusion and convection in melts play a significant role in most processes involving fluids, there has been an increasing interest to understand the underlying mechanisms and to obtain accurate data on these properties. Unfortunately all terrestrial experiments are degraded by gravity-driven flow, which makes it virtually impossible to carry out precise measurements.

Microgravity environment provides the means to drastically reduce convective contributions and thus to precisely determine diffusion- controlled mass transport properties. Consequently, theoretical models can be tested and the underlying mechanisms can be identified unambiguously. This may lead to new theoretical concepts on diffusion and transport in fluids and consequently to a better understanding of solidification and crystallization processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feuerbacher B., Hamacher H., Naumann R.J., “Materials Science in Space”, Springer Verlag, Berlin, 1986, 93–128

    Book  Google Scholar 

  2. Manning J.R., “Diffusion Kinetics for Atoms in Crystals”, Van Nostrand, Princeton N.J., 1968

    Google Scholar 

  3. N.N., “Diffusion data”, Trans. Tech., Aedermannsdorf

    Google Scholar 

  4. Langbein D., “Allowable g-levels for microgravity payloads”, ESA Contract N.5.504/83/FS(SC)

    Google Scholar 

  5. Hamacher H., Merbold U., “The microgravity environment of the MSDR during Space-lab-1”, Proc. AIAA 85–7026, 1985

    Google Scholar 

  6. Wever H., Frohberg G., Adam P., “Elektro- und Thermotransport in Metallen”, Joh. Ambr, Barth, Leipzig, 1973

    Google Scholar 

  7. Walls H.A., Upthegrove W.R., Acta Met. 12 (1964), 461

    Article  Google Scholar 

  8. Edwards J.B., Hucke E.E., Martin J.J., Met. Rev. 13 (1968), 1,

    Article  Google Scholar 

  9. Edwards J.B., Hucke E.E., Martin J.J., Met. Rev. and 13 (1968), 13

    Article  Google Scholar 

  10. Eyring H., Ree T., Proc. US Nat. Ac. Sc., 47 (1961), 526

    Article  Google Scholar 

  11. Swalin R.A., Acta Met. 7 (1959), 736

    Article  Google Scholar 

  12. Kraatz K.H., Frohberg G., Wever H., “Selbstdiffusion von Sn112 und Sn124 in schmelzflüssigem Sn”, Proceedings of Conference of Deutsche Gesellschaft für Metallkunde, Stuttgart, 1985

    Google Scholar 

  13. Reynik R.J, Trans. Met. Soc. AIME, 245 (1969), 75

    Google Scholar 

  14. Wöhlbier F.H., “Atomic transport in liquid metals”, Trans. Tech. Publ., Aedermannsdorf, 1986

    Google Scholar 

  15. Klemm A., J. Chirn. Phys., 60 (1963), 237

    Google Scholar 

  16. Soret Ch., C.R. Ac. Sc., Paris, 91 (1880), 289

    Google Scholar 

  17. Ludwig C., Sitzungsberichte der Akademie der Wissenschaften, Wien, 20 (1856), 539

    Google Scholar 

  18. De Groot S.R., “Thermodynamics of irreversible Processes”, North Holland, Amsterdam, 1963

    Google Scholar 

  19. Rosenberger F., “Fundamentals of Crystal Growth I”, Springer-Verlag, Berlin, 1979, p. 385

    Book  Google Scholar 

  20. Conference Proceedings: “Results of Spacelab-1”, 5th European Symp., Elmau 1984, ESA-SP 222, Paris 1984, p. 147

    Google Scholar 

  21. Gerl M., J. Phys. Chem. Solids, 28 (1967), 725

    Article  Google Scholar 

  22. Balourdet M., Malmejac Y., Desre P., Physics Letters, 56A, (1) (1976), 51

    Google Scholar 

  23. Chapman S., Cowling T.J., “The mathematical theory of non-uniform gases”, Cambridge Univ. Press (1964)

    Google Scholar 

  24. Pratt J.N., Chadwick A.V., Muir W.M., Swinton F.L., “Diffusion Processes”, Gordon and Breach, London, 1971, chapter 2

    Google Scholar 

  25. Lodding A., Klemm A., Z. Naturforschung, 17a (1962), 1085

    Google Scholar 

  26. Pikus G.E., Fiks V.B., Fiz. Tverd. Tela, 1 (1959), 1062

    Google Scholar 

  27. Verhoeven J.D., J. Metals, 1 (1966), 26

    Google Scholar 

  28. Pamplin B.R., “Crystal Growth”, Pergamon Press (1975), p. 150

    Google Scholar 

  29. Cf. General Ref. n° 15, pp. 111–112

    Google Scholar 

  30. Frohberg G., “Second order Marangoni effect”, to be published

    Google Scholar 

  31. Pamplin B.R., “Crystal Growth”, Pergamon Press (1975), p. 116

    Google Scholar 

  32. Nachtrieb N.H., “Self-diffusion in liquid metals”, Proc. Int. Conf. on “Properties of liquid metals”, Taylor and Francis, London (1967)

    Google Scholar 

  33. Fixman M., J. Chem. Phys., 20 (1958), 540

    Article  MathSciNet  Google Scholar 

  34. Ukanwa A.O., M. 558 — “Skylab results”, Nasa-MSFC (1979), p. 427

    Google Scholar 

  35. Frohberg G., Kraatz K.H., Wever H., ESA-SP-222 (1984), p. 201

    Google Scholar 

  36. Reed R.E., Uehlhoff W., Adair H.L., “Surface tension induced convection”, NASA-SP-412, 1 (1977), 367

    Google Scholar 

  37. Herr K., Barklage-Hilgefort H.J., Frischat G.H., ESA-SP-142 (1979), p. 263

    Google Scholar 

  38. Beier W., Braedt M., Frischat G.H., Phys. Chem. Glasses, 24 (1983), 1–4

    Google Scholar 

  39. Braedt M., Braetsch V., Frischat G.H., ESA-SP-222 (1984), p. 109

    Google Scholar 

  40. Kraatz K.H., Frohberg G., Wever H., “Interdiffusion in schmelzflüssigen Metallen” in “Wissenschaftliche Ziele der Deutschen Spacelab-Mission D1”, DFVLR-PT-SN, Köln, 1985, p. 66

    Google Scholar 

  41. Pond R.B., Winter J.M., “The diffusion of liquid zinc and lead” in DFVLR-PT-SN, Köln, 1985, p. 76

    Google Scholar 

  42. Merkens W., Richter J., “Interdiffusion in Salzschmelzen”, in DFVLR-PT-SN, Köln, 1985, p. 71

    Google Scholar 

  43. Malmejac Y., Praizey J.P., ESA-SP-222 (1984), p. 147

    Google Scholar 

  44. Praizey J.P., Malmejac Y., “Thermomigration of cobalt in liquid tin”, in DFVLR-PT-SN, Köln, 1985, p. 77

    Google Scholar 

  45. Bert J., Dupuy J., “Space thermal diffusion experiment in a molten AgI-KI mixture”, in DFVLR-PT-SN, Köln, 1985, p. 69

    Google Scholar 

  46. Frohberg G., Kraatz K.H., Wever H., Paper given at the “International Conference on D-1 Results”, 27–29 Aug. 1986, Norderney

    Google Scholar 

  47. Bernard C., Potard C., Hicter P., J. Chim. Phys. 73 (1976), 1525

    Google Scholar 

  48. Potard C., J. Less. Com. Met. 77 (1981), 55

    Article  Google Scholar 

  49. Shimoji M., Itami T., “Atomic transport in liquid metals”, Diffusion and Defect Data, Trans. Tech. 43 (1986), p. 338

    Article  Google Scholar 

  50. Cf. p. 6

    Google Scholar 

  51. Praizey J.P., ESA-SP-256 (1987), p. 501

    Google Scholar 

General References

  1. Adda Y., Philibert J., “La diffusion dans les solides”, Presses Universitaires, Paris, 1966

    Google Scholar 

  2. Manning J.R., “Diffusion Kinetics for Atoms in Crystals”, Van Nostrand, Princeton N.J., 1968

    Google Scholar 

  3. Jost W., “Diffusion in Solids, Liquids, Gases”, Academic Press, New York, 1960

    Google Scholar 

  4. Aaronson H.I., “Diffusion”, American Society for Metals, Metals Park, Ohio, 1973

    Google Scholar 

  5. Sherwood J.N., Chadwick A.V., Muir W.M., Swinton F.L., “Diffusion Processes”, Gordon and Breach, London, 1971

    Google Scholar 

  6. Wever H., Frohberg G., Adam P., “Elektro- und Thermotransport in Metallen”, Joh. Ambr. Barth, Leipzig, 1973

    Google Scholar 

  7. Pratt J.N., Sellors R.G.R., “Electrotransport in Metals and Alloys”, Trans. Tech., Riehen, 1973

    Google Scholar 

  8. De Groot S.R., “Thermodynamics of irreversible Processes”, North Holland, Amsterdam, 1963

    Google Scholar 

  9. Haase R., “Thermodynamik der irreversiblen Prozesse”, Steinkopff Verlag, Darmstadt, 1963

    Google Scholar 

  10. Knof H., “Thermodynamics of irreversible Processes in Liquids”, Vieweg Verlag, Braunschweig, 1966

    Google Scholar 

  11. Loading A., Lagerwall T., “Atomic Transport in Solids and Liquids”, Proceedings Europhys. Conf. Marstrand 1970, Verlag Z. Naturforschung, Tübingen, 1971

    Google Scholar 

  12. Adams P.D., Davies H.A., Epstein S.G., “The Properties of liquid Metals”, Taylor and Prancies, London, 1967

    Google Scholar 

  13. Evans R., Greenwood D.A., “Liquid Metals, 1976”, Institute of Physics, Bristol, 1977

    Google Scholar 

  14. Shimoji M., “Liquid Metals”, Academic Press, London, 1977

    Google Scholar 

  15. Feuerbacher B., Hamacher H., Naumann R.J., “Materials Sciences in Space”, Springer Verlag, Berlin, 1986

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 European Space Agency, Paris Cedex, France

About this chapter

Cite this chapter

Malmejac, Y., Frohberg, G. (1987). Mass Transport by Diffusion. In: Walter, H.U. (eds) Fluid Sciences and Materials Science in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46613-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46613-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46615-1

  • Online ISBN: 978-3-642-46613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics