Skip to main content

Abstract

The commercial importance of crystal growth from the melt is outlined and existing terrestrial technology reviewed. Gravity-related limitations and defects are identified. These are caused principally by effects associated with buoyancy-driven convection. Fundamental aspects of the phenomena and the defect generation mechanisms are considered.

This information is used to explore the potential of microgravity. The results obtained from space experiments to date are also reviewed.

Finally, future scientific activities are proposed and some comments on research policy and equipment development are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberger F., “Fundamentals of Crystal Growth” I, Springer Series in Solid-State Sciences, Vol. 5. Berlin-Heidelberg: Springer-Verlag (1979).

    Book  Google Scholar 

  2. Burton J.A., Prim R.C. and Slichter W.R, The distribution of solute in crystals grown from the melt, J. Chem. Phys. 21 (1953): 1987.

    Article  Google Scholar 

  3. Camel D., and Favier J.J., Thermal convection and longitudinal macro segregation in horizontal Bridgman crystal growth, J. Crystal Growth 67 (1984): 42.

    Article  Google Scholar 

  4. Ettouney H.M., and Brown R.A., Finite-Element methods for steady solidification problems, Comput. Phys. 49 (1983): 118.

    Article  MATH  Google Scholar 

  5. Polezhaev V.J., Hydrodynamics, heat and mass transfer during crystal growth, Crystals, Vol. 10. Ed. H.C. Freyhardt, Berlin-Heidelberg: Springer-Verlag (1984): 87–150.

    Google Scholar 

  6. Fiegl G., Recent advances and future directions in Cz-Silicon crystal growth technology, Solid State Technol. (August 1983): 121.

    Google Scholar 

  7. Müller G., Über die Entstehung von Inhomogenitäten in Halbleiterkristallen bei der Herstellung aus Schmelzen, Langensendelbach: Selisch-Verlag, 1986.

    Google Scholar 

  8. Müller G., Neumann G., and Weber W., Natural convection in vertical Bridgman configurations, J. Crystal Growth 70 (1984): 78–93.

    Article  Google Scholar 

  9. Müller G., Convection in melts and crystal growth, “Convective Transport and Instability Phenomena”. Eds. Zierep J. and Oertel Jr H., Karlsruhe: Braun Verlag (1982): 441–468.

    Google Scholar 

  10. Neumann G., Berechnung der thermischen Auftriebskonvektion in Modellsystemen zur Kristallzüchtung. Dissertation am Institut für Werkstoffwissenschaften, Universität Erlangen-Nürnberg (1986).

    Google Scholar 

  11. Müller G. and Neumann G., Suppression of doping striations in zone melting of InSb by enhanced convection on a centrifuge, J. Crystal Growth 59 (1982): 548.

    Article  Google Scholar 

  12. Müller G. and Neumann G., Tenfold growth rates in the travelling heater method of GaSb crystals by forced convection on a centrifuge. J. Crystal Growth 63 (1983): 58.

    Article  Google Scholar 

  13. Müller G., Völkl J. and Tomzig E., Thermal analysis of LEC InP growth, J. Crystal Growth 64 (1983): 40.

    Article  Google Scholar 

  14. Bauser E. and Strunk H.P., Microscopic growth mechanisms of semiconductors: experiments and models, J. Crystal Growth 69 (1984): 561.

    Article  Google Scholar 

  15. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 17c, Eds. Schulz M., Weiß H., Berlin-Heidelberg: Springer-Verlag (1984): 62–73.

    Google Scholar 

  16. Turner J.S., Buoyancy effects in fluids. Cambridge Univ. Press, 1973.

    MATH  Google Scholar 

  17. Chedzey H.A. and Hurle D.T.J., Avoidance of growth-striae in semiconductor and metal crystals grown by zone-melting techniques, Nature 210 (1966): 933–934

    Article  Google Scholar 

  18. Preisser F., Schwabe D. and Scharmann A., Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface, J. Fluid. Mech. 126 (1983) 545–567

    Article  Google Scholar 

  19. Chun Ch.-H., Marangoni convection in a floating zone under reduced gravity, J. Crystal Growth 48 (1980): 600–610

    Article  Google Scholar 

  20. Barthel J. and Eichler K., The influence of impurity banding on the effective distribution of surface tension driven flow in floating zone melting experiments, Krist. und Technik 2 (1967): 205–215

    Article  Google Scholar 

  21. Barthel J., Eichler K., Durisch M. and Laser W., On the significance of surface tension driven flow in floating zone melting experiments, Krist. und Technik 14 (1979): 637–644

    Article  Google Scholar 

  22. Garcia-Ybarra P.L. and Velarde M., Oscillatory Marangoni-Benard interfacial instability and capillary gravity waves in single and two component liquid layers with or without Soret thermal diffusion, Phys. Fluid (1986). In press.

    Google Scholar 

  23. Walter H.U., Proc. 3rd Space Processing Symp., Skylab results, NASA TMX-70252 (1974): 257–275.

    Google Scholar 

  24. Hurle D.T.J., Jakeman E. and Pike E.R., Striated solute distributions produced by temperature oscillations during crystal growth from the melt, J. Crystal Growth 3/4 (1968): 633–640

    Article  Google Scholar 

  25. Wheeler A.A., The effect upon Czocharalski growth of periodic modulation of the growth rate, J. Crystal Growth 56 (1982): 67–76

    Article  Google Scholar 

  26. Favier J.-J. and Wilson, L.O., A test of the boundary layer model in unsteady Czochralski growth, J. Crystal Growth 58 (1982): 103–110

    Article  Google Scholar 

  27. Birman B.I., A theoretical study of the effects of various factors on impurity zoning in crystals, Growth of Crystals, Vol. 11. Ed. Chernov A.A., Consultants Bureau pp 278–283

    Google Scholar 

  28. Coriell S.R., Cordes M.R., Boettinger W.J. and Sekerka R.F., Convective interfacial instabilities during unidirectional solidification of a binary alloy, J. Crystal Growth 49 (1980): 13–28

    Article  Google Scholar 

  29. Hurle D.T. J., Jakeman E. and Wheeler A.A., Effect of solutal convection on the morphological stability of a binary alloy, J.Crystal Growth 58 (1982): 163–179

    Article  Google Scholar 

  30. Jenkins D.R., Nonlinear interaction of morphological and convective instabilities during solidification of a dilute binary alloy, IMA Journal of Appl. Math. 35 (1985) 145–157

    MATH  MathSciNet  Google Scholar 

  31. Fang Q.T., Glicksman M.E., Coriell S.R., McFadden G.B. and Boisvert R.F., Convective influence on the stability of a cylindrical solid-liquid interface, J. Fluid Mech. 151 (1985): 121–140

    Article  Google Scholar 

  32. Witt A.F., Lichtensteiger M. and Gatos H.C., Experimental approach to the quantitative determination of dopant segregation during crystal growth on a microscale: Ga-doped Ge, J. Electrochem. Soc. 120 (1973): 1119–1123.

    Article  Google Scholar 

  33. Tiller W.A., Jackson K.A., Rutter J.W. and Chalmers B., The redistribution of solute atoms during the solidification of metals, Acta Met. 1 (1953): 428–437.

    Article  Google Scholar 

  34. Coriell S.R. and Sekerka R.F., Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid liquid interface, J. Crystal Growth 46 (1979): 479–482.

    Article  Google Scholar 

  35. Coriell S.R., Boisvert R.F., Rehm R.G. and Sekerka R.F., Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid liquid interface. II. Large departures from planarity, J. Crystal Growth 54 (1981): 167–175.

    Article  Google Scholar 

  36. Chang C.J. and Brown R.A., Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth, J. Crystal Growth 63 (1983): 343–364.

    Article  Google Scholar 

  37. Ettouney H.M. and Brown R.A., Effect of heat transfer on melt/solid interface shape and solute segregation in edge-defined film-fed growth, J. Crystal Growth 58 (1982): 313–329.

    Article  Google Scholar 

  38. Malmejac Y. and Praizey J.P., Thermomigration of cobalt in liquid tin, Proc. 5th European Symposium on Materials Science under Microgravity, Schloss Elmau 1984: 147–152 (ESA SP-222).

    Google Scholar 

  39. Frohberg G., Kraatz K.H. and Wever H., Seifdiffusion of Sn112 and Sn124 in liquid tin, Ibid.: 201–205.

    Google Scholar 

  40. Lord Rayleigh, Scientific Papers, Vol. 1 (1899): 377.

    MathSciNet  Google Scholar 

  41. Heywang W., Zur Stabilität senkrechter Schmelzzonen, Z. Naturforsch. 11a (1956): 238–243.

    Google Scholar 

  42. Lagowski J., Gatos H.C. and Dabkowski F.P., Partially confined configuration for the growth of semiconductor crystals from the melt in zero-gravity environment, J. Crystal Growth 72 (1985): 595–598.

    Article  Google Scholar 

  43. Seidensticker R.G., Proc. 3rd Space Processing Symposium, Marshall Space Flight Center, April 1975: 595–603.

    Google Scholar 

  44. Malinin A.Yu., Sagdeev R.Z., Khryapov V.T., Solomin E.T., Seliverstov V.I., Zhelanni Yu.M., Podolinni A.F., Bocharov D.U., Multipurpose apparatus “Crystal” for process experiments in space, Proc. 3rd European Symposium on Materials Science in Space, Grenoble 1979, 5–8 (ESA SP-142).

    Google Scholar 

  45. Ever A., Kolbesen B.O. and Nitsche R., Floating zone growth of silicon in a double ellipsoid mirror heating facility, J. Crystal Growth 57 (1982): 145–154.

    Article  Google Scholar 

  46. Eyer A., Nitsche R. and Zimmermann H., A double-ellipsoid mirror furnace for zone crystallization experiments in Spacelab, J. Crystal Growth 47 (1979): 219–229.

    Article  Google Scholar 

  47. Eyer A., Leiste H. and Nitsche R., Floating zone growth of silicon under microgravity in a sounding rocket, J. Crystal Growth 71 (1985): 173–182.

    Article  Google Scholar 

  48. Carlberg T., Liljendahl M., Joensson R. and Holm P., Crystal growth furnace developed for floating zone experiments in sounding rockets, Proc. 7th ESA Symp. on Europ. Rocket and Balloon Program, Loen, Norway (1985): 165–172 (ESA SP-229).

    Google Scholar 

  49. Walter H.U., Generation and propagation of defects in indium antimonide, J. Electrochem. Soc. 124 (1977): 250–258.

    Article  Google Scholar 

  50. Kashimov F.R. et al., Structural and physical characteristics of InSb single crystals grown under near-zero gravity conditions, Proc. 3rd European Symposium on Materials Sciences in Space, Grenoble, 1979: 9–15 (ESA SP-142).

    Google Scholar 

  51. Markov E.V. et al., The influence of space conditions on directional crystallization of germanium and its properties, Ibid.: 17–23.

    Google Scholar 

  52. Yee J.F., Lin M., Sarma K. and Wilcox W.R., The influence of gravity on crystal defect formation in InSb-GaSb alloys, J. Crystal Growth 30 (1975): 185–192.

    Article  Google Scholar 

  53. Rodot H. and Tottereau O., Cristaux de tellure de plomb labors en microgravit, Proc. 5th European Symposium on Materials Sciences under Microgravity, Schloss Elmau 1984: 135–139 (ESA SP-222).

    Google Scholar 

  54. Abramov O.V., Ignatjev G.E., Kazakov I.P. and Chashechkina Zh.Yu., Structural studies of PbTe crystals and Te-Se solid solutions obtained under different gravity conditions in the “Crystal” furnace, Abstr. 6. Intern. Conference on Crystal Growth, Moscow 1980: 262.

    Google Scholar 

  55. Lendvay E., Harsy M., Goeroeg T., Gyuoro I., Pozsgai I., Koltai F., Gyulai J., Lohner T., Mezey G., Kotai E., Paszti F., Hrjapov V.T., Kultchisky N.A. and Regel L.L., The growth of GaSb under microgravity conditions, J. Crystal Growth 71 (1985): 538–550.

    Article  Google Scholar 

  56. Witt A.F., Gatos H.C., Lichtensteiger M., Lavine M.C. and Herman C.J., Crystal Growth and steady state segregation under zero gravity: InSb, J. Electrochem. Soc. 122 (1975): 276–283.

    Article  Google Scholar 

  57. Yue J.T. and Voltmer F.W., Influence of gravity-free solidification on solute microsegregation, J. Crystal Growth 29 (1975): 329–341.

    Article  Google Scholar 

  58. Witt A.F., Gatos H.C., Lichtensteiger L. and Herman C.J., Crystal growth and segregation under zero gravity: Ge, J. Electrochem. Soc. 125 (1978): 1832–1840.

    Article  Google Scholar 

  59. Zemskov V.S., Shulpina I.L., Titkov A.N., Belokurova I.N., Guseva N.B. and Safarov V.I., Investigation of germanium-silicon-antimony solid solution crystals prepared in the Universal Furnace experiment in the Soyuz-Apollo program, Sov. Phys. Solid State 21 (1979): 576–583.

    Google Scholar 

  60. Walter H.U., Kristallzüchtung im Weltraum, Z. Flugwiss. Weltraumforsch. 7 (1983): 372–384.

    Google Scholar 

  61. Schwabe D., Scharmann A., Preisser F. and Oeder R., Experiments on surface tension driven flows in floating zone melting, J. Crystal Growth 43 (1978): 305–312.

    Article  Google Scholar 

  62. Chun Ch.-H. and Wuest W., Experiments on the transition from steady to oscillatory Marangoni convection in a floating zone under reduced gravity, Acta Astronautica 6 (1979): 1073–1082.

    Article  Google Scholar 

  63. Schwabe D., Preisser F. and Scharmann A., Verification of the oscillatory state of thermocapillary convection in a floating zone under microgravity, Acta Astronautica 9 (1982): 265–278.

    Article  Google Scholar 

  64. Schwabe D. and Scharmann A., Measurement of the critical Marangoni number in a floating zone under reduced gravity, Proc. 4th European Symposium on Materials Science under Microgravity 1983: 213–218 (ESA SP-191).

    Google Scholar 

  65. Kamotani Y., Ostrach S. and Vargas M., Oscillatory thermocapillary convection in a simulated floating zone configuration, J. Crystal Growth 66 (1984) 83–90.

    Article  Google Scholar 

  66. Eyer A., Leiste H. and Nitsche R., Proc. 5th European Symposium on Materials Sciences under Microgravity, Schloss Elmau 1984: 173–181 (ESA SP-222).

    Google Scholar 

  67. Kölker H., Crystallization of a silicon sphere, Proc. 5th European Symposium on Materials Science under Microgravity, Schloss Elmau 1984: 169–171 (ESA SP-222).

    Google Scholar 

  68. Kölker H., 1986. Private communication.

    Google Scholar 

  69. Eyer A. and Leiste H., Striation-free silicon crystals by float-zoning with surface-coated melt, J. Crystal Growth 71 (1985): 249–252.

    Article  Google Scholar 

  70. Cröll A., Müller W. and Nitsche R., Floating-zone growth of surface-coated silicon under microgravity, J. Crystal Growth 79 (1986):65–70.

    Article  Google Scholar 

  71. Cröll A., Müller W. and Nitsche R., Dopant distribution in semiconductor crystals under microgravity, Proc. 6th European Symposium on Materials Sciences under Microgravity Conditions, Bordeaux 1986: 87–94 (ESA-SP-256).

    Google Scholar 

  72. Carlberg T., A preliminary report on floating-zone experiments with germanium crystals in a sounding rocket, Proc. 5th Europ. Symp. Materials Sciences under Microgravity, Schloss Elmau 1984: 367–373 (ESA SP-222).

    Google Scholar 

  73. Carlberg T., Floating zone experiments with germanium crystals in sounding rockets, Acta Astronautica (1986). To be published.

    Google Scholar 

  74. Carlberg T., Lateral solute segregation during floating-zone crystal growth under different gravity conditions, J. Crystal Growth 79 (1986): 71–76.

    Article  Google Scholar 

  75. Walter H.U., Containerless processing of single crystals in low-g environment, Am. Inst. of Aeronautics and Astronautics, Conference on Scientific Experiments on Skylab, Huntsville, Oct. 1974, Paper Nr. 74–1241.

    Google Scholar 

  76. Rodot H., Hamidi M., Bourneix J., Okhotin A.S., Zoubridski I.A., Kriapov V.T. and Markov E.V., Crystal growth method under microgravity, J. Crystal Growth 52 (1981): 478–484.

    Article  Google Scholar 

  77. Sanz A., The crystallisation of a molten sphere, J. Crystal Growth 74 (1986): 642–655.

    Article  Google Scholar 

  78. Carruthers J.R., Studies of liquid floating zones, Proc. 3rd Space Processing Symp. “Skylab Results,” NASA TMX-70252 (1974): 837–856.

    Google Scholar 

  79. Benz K.W. and Nagel K., Private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 European Space Agency, Paris Cedex, France

About this chapter

Cite this chapter

Hurle, D.T.J., Müller, G., Nitsche, R. (1987). Crystal Growth from the Melt. In: Walter, H.U. (eds) Fluid Sciences and Materials Science in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46613-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46613-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46615-1

  • Online ISBN: 978-3-642-46613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics