Skip to main content

The Dynamics of Turbulent Spots

  • Conference paper
Frontiers in Fluid Mechanics

Abstract

In this article we present a critical review of the present state of knowledge of turbulent spots. We discuss the properties of both newborn as well as fully-developed spots. Both ensemble-averaged results and also the underlying structure of the spot are presented. It is shown that the ensemble-averaged results can be misleading, and that the spot has many features similar to those of a fully-turbulent boundary layer. The mechanisms by which a turbulent spot spreads into the surrounding fluid, which were first suggested by Corrsin and Kistler (1955), will be elaborated. Finally, similarities between spots and other flows will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amini, J. (1978) “Transition Contrôlée en Couche Limite: Etude Expérimentale du Développement d’une Perturbation Tridimensionnelle Instantanée,” Docteur-Ingénieur Thése, L’Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., Sokolov, M. & Van Atta, C. W. (1981) “Simultaneous Temperature and Velocity Measurements in the Plane of Symmetry of a Transitional Turbulent Spot,” J. Fluid Mech. 108, p. 317.

    Article  ADS  Google Scholar 

  • Bakewell, H. P. & Lumley, J. L. (1967) “Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow,” Phys. Fluids 10, p. 1880.

    Article  ADS  Google Scholar 

  • Benjamin, T. B. (1961) “The Development of Three-Dimensional Disturbances in an Unstable Film of Liquid Flowing Down an Inclined Plane,” J. Fluid Mech. 10, p. 401.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Blackwelder, R. F. (1983) “Analogies between Transition and Turbulent Boundary Layers,” Phys. Fluids 26, p. 2807.

    Article  ADS  Google Scholar 

  • Blackwelder, R. F. & Eckelmann, H. (1979) “Streamwise Vortices Associated with the Bursting Phenomenon,” J. Fluid Mech. 94, p. 577.

    Article  ADS  Google Scholar 

  • Blackwelder, R. F. & Kaplan, R. E. (1976) “On the Wall Structure of the Turbulent Boundary Layer,” J. Fluid Mech. 76, p. 89.

    Article  ADS  Google Scholar 

  • Blackwelder, R. F. & Kovasznay, L. S. G. (1972) “Time Scales and Correlations in a Turbulent Boundary Layer,” Phys. Fluids 15, p. 1545.

    Article  ADS  Google Scholar 

  • Cantwell, B., Coles, D. & Dimotakis, P. (1978) “Structure and Entrainment in the Plane of Symmetry of a Turbulent Spot,” J. Fluid Mech. 87, p. 641.

    Article  ADS  Google Scholar 

  • Carlson, D. R., Widnall, S. E. & Peeters, M. F. (1982) “A Flow-Visualization Study of Transition in Plane Poiseuille Flow,” J. Fluid Mech. 121, p. 487.

    Article  ADS  Google Scholar 

  • Charters, A. C. (1943) “Transition between Laminar and Turbulent Flow by Transverse Contamination,” N.A.C.A. Tech. Note No. 891.

    Google Scholar 

  • Chen, C.-H. P. & Blackwelder, R. F. (1978) “Large-scale Motion in a Turbulent Boundary Layer: a Study Using Temperature Contamination,” J. Fluid Mech. 89, p. 1.

    Article  ADS  MATH  Google Scholar 

  • Coles, D. & Barker, S. J. (1975) “Some Remarks on a Synthetic Turbulent Boundary Layer,” in Turbulent Mixing in Nonreactive and Reactive Flows, ed. S. N. B. Murthy, Plenum, p. 285.

    Google Scholar 

  • Corrsin, S. & Kistler, A. L. (1955) “Free-Stream Boundaries of Turbulent Flows,” N.A.C.A. Rep. No. 1244. (Supersedes N.A.C.A. TN 3133.)

    Google Scholar 

  • Criminale, W. D. & Kovasznay, L. S. G. (1962) “The Growth of Localized Disturbances in a Laminar Boundary Layer,” J. Fluid Mech. 14, p. 59.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dopazo, C & O’Brien, E. E. (1979) “Intermittancy in Free Turbulent Shear Flows,” in Turbulent Shear Flows I, eds. F. Durst et al., Springer, p. 6.

    Chapter  Google Scholar 

  • Elder, J. W. (1960) “An Experimental Investigation of Turbulent Spots and Breakdown to Turbulence,” J. Fluid Mech. 9, p. 235.

    Article  ADS  MATH  Google Scholar 

  • Emmons, H. W. (1951) “The Laminar-Turbulent Transition in a Boundary Layer,” J. Aero. Sci. 18, p. 490.

    MathSciNet  MATH  Google Scholar 

  • Falco, R. E. (1977) “Coherent Motions in the Outer Region of Turbulent Boundary Layer,” Phys. Fluids 20, p. S124.

    Article  ADS  Google Scholar 

  • Fiedler, H. E. & Head, M. R. (1966) “Intermittency Measurements in a Turbulent Boundary Layer,” J. Fluid Mech. 25, p. 719.

    Article  ADS  Google Scholar 

  • Gad-el-Hak, M., Blackwelder, R. F. & Riley, J. J. (1980) “A Visual Study of the Growth and Entrainment of Turbulent Spots,” in Laminar-Turbulent Transition, eds. R. Eppler and H. Fasel, Springer, p. 297.

    Chapter  Google Scholar 

  • Gad-el-Hak, M., Blackwelder, R. F. & Riley, J. J. (1981) “On the Growth of Turbulent Regions in Laminar Boundary Layers,” J. Fluid Mech. 110, p. 73.

    Article  ADS  Google Scholar 

  • Gad-el-Hak, M., Davis, S. H., McMurray, J. T. & Orszag, S. A. (1984) “On the Stability of the Decelerating Laminar Boundary Layer,” J. Fluid Mech. 138, p. 297.

    Article  ADS  Google Scholar 

  • Gaster, M. (1967) “On the Flow Along Swept Leading Edges,” Aero. Quart. 18, p. 165.

    Google Scholar 

  • Gaster, M. (1975) “A Theoretical Model of a Wave Packet in the Boundary Layer on a Flat Plate,” Proc. Roy. Soc. A 347, p. 271.

    Article  ADS  Google Scholar 

  • Gaster, M. (1978) “The Physical Processes Causing Breakdown to Turbulence,” 12th Naval Hydrodynamics Symposium, Washington, D.C., p. 22.

    Google Scholar 

  • Gaster, M. (1981) “On Transition to Turbulence in Boundary Layers,” in Transition and Turbulence, ed. R. E. Meyer, Academic Press, p. 95.

    Google Scholar 

  • Gaster, M. & Grant, I. (1975) “An Experimental Investigation of the Formation and Development of a Wave Packet in a Laminar Boundary Layer,” Proc. Roy. Soc. A 347, p. 253.

    Article  ADS  Google Scholar 

  • Görtier, H. (1941) “Instabilität Laminarer Grenzschichten an Konkaven Wanden Gegenü ber Gewissen Dreidimensionalen Störungen,” Zeitschrift für Angewandte Math. & Mech. 21, p. 250.

    Google Scholar 

  • Head, M. R. & Bandyopadhyay, P. (1978) “Combined Flow Visualization and Hot-Wire Measurements in Turbulent Boundary layers,” in Coherent Structure of Turbulent Boundary Layers, ed. C. R. Smith & D. E. Abbott, Lehigh Univ., p. 98.

    Google Scholar 

  • Itsweire, E. C. (1983) “An Investigation of the Coherent Structures Associated with a Turbulent Spot in a Laminar Boundary Layer,” Ph.D. Thesis, Univ. of California — San Diego.

    Google Scholar 

  • Itsweire, E. C. & Van Atta, C. W. (1983) “The Effect of Different Similarity Growth Transformations on Ensemble Mean Particle Paths in Turbulent Spots,” J. de Physique-Letters 44, p. 917.

    Article  Google Scholar 

  • Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. (1962) “The Three-Dimensional Nature of Boundary Layer Instability,” J. Fluid Mech. 12, p. 1.

    Article  ADS  MATH  Google Scholar 

  • Kollman, W. (1984) “Intermittant Turbulent Flows,” in these proceedings.

    Google Scholar 

  • Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. (1970) “Large- Scale Motion in the Intermittent Region of a Turbulent Boundary Layer,” J. Fluid Mech. 41, p. 283.

    Article  ADS  Google Scholar 

  • Kovasznay, L. S. G., Komoda, H. & Vasudeva, B. R. (1962) “Detailed Flow Field in Transition,” Proc. Heat Transfer and Fluid Mech. Inst., Stanford Univ. Press, p. 1.

    Google Scholar 

  • Leonard, A. (1980) “Vortex Simulation of Three-Dimensional Spotlike Disturbances in a Laminar Boundary Layer,” in Turbulent Shear Flows II, eds. J. S. Bradbury et al., Springer, p. 67.

    Google Scholar 

  • Leonard, A. (1981) “Turbulent Structures in Wall-Bounded Shear Flow Observed via Three-Dimensional Numerical Simulations,” in Lect. Notes in Physics 136, ed. J. Jimenez, Springer, p. 119.

    Google Scholar 

  • Liepmann, H. W., Brown, G. L. & Nosenchuck, D. M. (1982) “Control of Laminar-Instability Waves Using a New Technique,” J. Fluid Mech. 118, p. 187.

    Article  ADS  Google Scholar 

  • Matsui, T. (1980) “Visualization of Turbulent Spots in the Boundary Layer Along a Flat Plate in a Water Flow,” in Laminar-Turbulent Transition, eds. R. Eppler & H. Fasel, Springer, p. 288.

    Chapter  Google Scholar 

  • Mautner, T. S. & Van Atta, C. W. (1982) “An Experimental Study of the Wall-Pressure Field Associated with a Turbulent Spot in a Laminar Boundary Layer,” J. Fluid Mech. 118, p. 59.

    Article  ADS  Google Scholar 

  • Mitchner, M. (1954) “Propagation of Turbulence from an Instantaneous Point Disturbance,” J. Aero. Sci. 21, p. 350.

    Google Scholar 

  • Perry, A. E., Lim, T. T. & Teh, E. W. (1981) “A Visual Study of Turbulent Spots,” J. Fluid Mech. 104, p. 387.

    Article  ADS  Google Scholar 

  • Schubauer, G. B. & Klebanoff, P. S. (1956) “Contributions on the Mechanics of Boundary Layer Transition,” N.A.C.A. Rep. No. 1289.

    Google Scholar 

  • Schaubauer, G. B. & Skramstad, H. K. (1948) “Laminar Boundary Layer Oscillations on a Flat Plate,” N.A.C.A. Rep. No. 909.

    Google Scholar 

  • Theodorsen, T. (1952) “Mechanism of Turbulence,” Proc. 2nd Midwestern Conf. Fluid Mech. Ohio State Univ. p. 1.

    Google Scholar 

  • Theodorsen, T. (1955) “The Structure of Turbulence,” in 50 Jahre Grenzschichtforschung, ed. H. Görtier & W. Tollmien, Braunschweig: Vieweg & Son, p. 55.

    Google Scholar 

  • Tollmein, W. (1931) “The Production of Turbulence,” N.A.C.A. TM No. 609.

    Google Scholar 

  • Townsend, A. A. (1976) “The Structure of Turbulent Shear Flow,” Cambridge Univ. Press.

    Google Scholar 

  • Van Atta, C. W. & Heiland, K. N. (1980) “Exploratory Temperature-Tagging Measurements of Turbulent Spots in a Heated Laminar Boundary Layer,” J. Fluid Mech. 100, p. 243.

    Article  ADS  Google Scholar 

  • Vasudeva, B. R. (1967) “Boundary-Layer Instability Experiment with Localized Disturbance,” J. Fluid Mech. 29, p. 745.

    Article  ADS  Google Scholar 

  • Wygnanski, I. (1981) “The Effects of Reynolds Number and Pressure Gradient on the Transitional Spot in a Laminar Boundary Layer,” in Lecture Notes in Physics 136, ed. J. Jimenez, Springer, p. 304.

    Google Scholar 

  • Wygnanski, I. & Champagne, F. H. (1973) “On Transition in a Pipe. Part 1: The Origin of Puffs and Slugs and the Flow in a Turbulent Slug,” J. Flud Mech. 29, p. 281.

    Article  ADS  Google Scholar 

  • Wygnanski, I., Haritonidis, J. H. & Kaplan, R. E. (1979) “On Tollmien-Schlichting Wave Packet Produced by a Turbulent Spot,” J. Fluid Mech. 92, P. 505.

    Article  ADS  Google Scholar 

  • Wygnanski, I., Sokolov, M. & Friedman, D. (1975) “On Transition in a Pipe. Part 2: The Equilibrium Puff,” J. Fluid Mech. 69, p. 283.

    Article  ADS  Google Scholar 

  • Wygnanski, I., Sokolov, M. & Friedman, D. (1976) “On a Turbulent ‘Spot’ in a Laminar Boundary Layer,” J. Fluid Mech. 78, p. 785.

    Article  ADS  Google Scholar 

  • Wygnanski, I., Zilberman, M. & Haritonidis, J. H. (1982) “On the Spreading of a Turbulent Spot in the Absence of a Pressure Gradient,” J. Fluid Mech. 123, p. 69.

    Article  ADS  Google Scholar 

  • Zilberman, M., Wygnanski, I. & Kaplan, R. E. (1977) “Transitional Boundary Layer Spot in a Fully Turbulent Environment,” Phys. Fluids 20, p. S258.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riley, J.J., Gad-el-Hak, M. (1985). The Dynamics of Turbulent Spots. In: Davis, S.H., Lumley, J.L. (eds) Frontiers in Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46543-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46543-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46545-1

  • Online ISBN: 978-3-642-46543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics