Skip to main content

Some Contributions of Two-Point Closure to Turbulence

  • Conference paper
Frontiers in Fluid Mechanics

Abstract

Since their introduction over thirty years ago, two-point-moment closures have offered promise of providing practical and theoretical information concerning certain aspects of turbulent flows. More recently, both experiments and direct numerical simulations have suggested a high degree of organization (coherent structures) in even homogeneous flows, which contradicts—at least in its extreme form—the assumption of near Gaussianity central to closures. We examine here some successes and failures of closure for several problems including three-dimensional turbulence, and quasi-two-dimensional flows of the sort employed in geophysical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G. K., 1959: The Theory of Homogeneous Turbulence. Cambridge at the University Press. 197 pp.

    Google Scholar 

  • Batchelor, G. K., 1969: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl., 12, II, 233.

    ADS  MATH  Google Scholar 

  • Boor, C. de, 1977: Package for calculating with B-splines. SIAM. J. Numer. Anal., 14, 441.

    Article  MathSciNet  MATH  Google Scholar 

  • Cambon, C., D. Jeandel, and J. Mathieu, 1980: Spectral modelling of

    Google Scholar 

  • homogeneous nonisotropic turbulence. J. Fluid Mech., 104, 247–262.

    Google Scholar 

  • Charney, J. G., 1971: Geostropic turbulence, J. Atmos. Sci., 28, 1087–1095.

    Article  ADS  Google Scholar 

  • Comte-Bellot, G. and S. Corrsin, 1966: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech., 24, 657–682.

    Article  ADS  Google Scholar 

  • Corrsin, S., 1951: The decay of isotropic temperature fluctuations in an isotropic turbulence. J. Atmos. Sci., 18, 1951.

    Google Scholar 

  • Corrsin, S., 1964: The isotropic turbulent mixer. II. Arbitrary Schmidt Number. A. I. Ch. E. J., 10, 870.

    Article  Google Scholar 

  • Dannevik, W., 1984: Two-point closure study of covariance budgets for turbulent Rayleigh-Benard convection. Ph.D. Thesis, St. Louis University, St. Louis, MO.

    Google Scholar 

  • Edwards, S. F., 1964: The statistical dynamics of homogeneous turbulence. J. Fluid Mech., 18, 239–273.

    Article  MathSciNet  ADS  Google Scholar 

  • Fornberg, B., 1977: A numerical study of 2-D turbulence. J. Comp. Phys., 25, 1.

    Article  ADS  MATH  Google Scholar 

  • Frisch, U., A. Pouquet, P. L. Sulem, and M. Meneguzzi, 1983: The dynamics of two-dimensional ideal magnetohydrodynamics. J. Mecanique ThĂ©or. Appl. Suppl., R. Moreau, Ed., 191–216.

    Google Scholar 

  • Gage, K. S., 1979: Evidence for a k-5/3 law inertial range in mesoscale two dimensional turbulence. J. Atmos. Sei., 36, 1950–1954.

    Article  ADS  Google Scholar 

  • Heisenberg, W., 1948: Zur statistichen Theorie der Turbulenz. Z. Physik, 124, 1628–657.

    MathSciNet  Google Scholar 

  • Herring, J. R., 1975: Theory of two-dimensional anisotropic turbulence. J. Atmos. Sci., 32, 2254–2271.

    Article  ADS  Google Scholar 

  • Herring, J. R., and R. M. Larcheveque, J.-P. Chollet, M. Lesieur, and G. R. Newman, 1982: A comparative assessment of spectral closures as applied to passive scalar diffusion. J. Fluid Mech., 124, 411–437.

    Article  ADS  MATH  Google Scholar 

  • Herring, J. R., and J. C. McWilliams, 1984: Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure. To appear in J. Fluid Mech.

    Google Scholar 

  • Herring, J. R., and R. H. Kraichnan, 1978: A numerical comparison of velocity-based and strain-based Lagrangian-history turbulence approximations. J. Fluid Mech., 91, 581–597.

    Article  ADS  Google Scholar 

  • Kovasznay, L. S. G., 1948: Spectrum of locally isotropic turbulence. J. Aeronaut. Sci., 15, 657–674.

    MathSciNet  Google Scholar 

  • Kraichnan, R. H., 1959: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5, 497–543.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kraichnan, R. H., and E. A. Speigel, 1962: Model for energy transfer in isotropic turbulence. Phys. Fluids, 5, 583–588.

    Article  ADS  Google Scholar 

  • Kraichnan, R. H., 1964: Decay of isotropic turbulence in the Direct Interaction Approximation. Phys. Fluids, 7, 1030.

    Article  MathSciNet  ADS  Google Scholar 

  • Kraichnan, R. H., 1971: An almost-Markovian Galilean-invariant turbulent model. J. Fluid Mech., 47, 513–524.

    Article  ADS  MATH  Google Scholar 

  • Kraichnan, R. H., 1976: Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 1521.

    Article  ADS  Google Scholar 

  • Kraichnan, R. H., and J. R. Herring, 1978: A strained based Lagrangian-history turbulence theory. J. Fluid Mech., 88, 355–367.

    Article  ADS  MATH  Google Scholar 

  • Lee, T. D., 1950: Note on the coefficient of eddy viscosity in isotropic hydromagnetic turbulence in an incompressible fluid. Ann. Phys., 321, 292–321.

    Google Scholar 

  • Leith, C. E., 1968: Diffusion approximation for turbulent scalar fields. Phys. Fluids, 11, 1612–1617.

    Article  ADS  MATH  Google Scholar 

  • Lesieur, M. and D. Schertzer, 1978: Amortissement auto similaritĂ© d’une turbulence a grand nombre de Reynolds. J. de MĂ©canique, 17, 609–646.

    MathSciNet  ADS  MATH  Google Scholar 

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749–761.

    Article  ADS  Google Scholar 

  • McWilliams, J. C., 1984: The emergence of isolated, coherent vortices in a turbulent flow. To appear in J. Fluid Mech.

    Google Scholar 

  • Monin, A. S. and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2. The M.I.T. Press, Cambridge, MA, and London.

    Google Scholar 

  • Oboukhov, A. M., 1941: Spectral energy distribution in a turbulent flow. Akad. Nauk. USSR, 32, 22–24.

    Google Scholar 

  • Orszag, S. A., 1974: Statistical Theory of Turbulence: Les Houches Summer School on Physics. Gordon and Breach, 216 pp.

    Google Scholar 

  • Printer, P. M., 1975: Splines and variational methods. John Wiley & Sons, New York. 321 pp.

    Google Scholar 

  • Proudman, I. and W. H. Reid, 1954: On the decay of normally distributed and homogeneous turbulent velocity field. Phil. Trans. Roy. Soc, A247, 163–189.

    MathSciNet  ADS  Google Scholar 

  • Saffman, P. G., 1971: On the spectrum and decay of random two-dimensional vorticity distribution of large Reynolds numbers. Studies in Applied Math., 50, 377.

    MATH  Google Scholar 

  • Schertzer, D., 1980: Comportements auto-similaires en turbulence homogene isotrope. C. R. Acad. Sci., Paris, 280, 277.

    Google Scholar 

  • Schumann, U., and J. R. Herring, 1976: Axisymmetric homogeneous turbulence: A comparison of direct spectral simulations with the direct interaction approximation. J. Fluid Mech., 76, 755–782.

    Article  ADS  MATH  Google Scholar 

  • Sreenivasaan, K. R., S. Tavoularis, R. Henry, and S. Corrsin, 1980: Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech., 100, 597–621.

    Article  ADS  Google Scholar 

  • Tatsumi, T., 1955: Theory of isotropic turbulence with the normal joint-probability distribution of velocity. Proceedings 4th Japan Nat. Congr., Appl. Mech., Tokyo, 307–311.

    Google Scholar 

  • Tatsumi, T., S. Kida, and J. Mizushima, 1978: The multiple scale cumulant expansion for isotropic turbulence. J. Fluid Mech., 85, 97–142.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Warhaft, Z., and J. L. Lumley, 1978: An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech., 88, 659.

    Article  ADS  Google Scholar 

  • Zippelius, A., and E. D. Siggia, 1982: Disappearance of stable convection between free-slip boundaries. Phys. Rev., A26, 1788–1790.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herring, J.R. (1985). Some Contributions of Two-Point Closure to Turbulence. In: Davis, S.H., Lumley, J.L. (eds) Frontiers in Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46543-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46543-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46545-1

  • Online ISBN: 978-3-642-46543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics