Skip to main content

Acoustic Wave Propagation in Fluids

  • Conference paper
Frontiers in Fluid Mechanics

Abstract

The classical viscothermal problem of infinitesimal, planar acoustic-wave propagation in a single-component Newtonian fluid is extended to more general multicomponent materials that are diffusive, reacting and viscoelastic. The attenuation and dispersion of the sound wave are determined by solving the linearized (first-order) equations of mass, linear momentum, energy and chemical kinetics. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation coefficient ≡ - (α + i ω/c), where α is the attenuation coefficient, ⊂ is the phase speed of the progressive wave and ω is the angular frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. Coleman and V. J. Mizel, J. Chem. Phys. 40, 1116–1125, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  2. C. A. Truesdell, J. Rational Mech. and Analysis 2, 643–741, October, 1953.

    MathSciNet  MATH  Google Scholar 

  3. E. Buckingham, Phys. Rev. 4, 345, 1914

    Article  ADS  Google Scholar 

  4. E. Buckingham, Phil. Mag. (6) 42, 696, 1921.

    Google Scholar 

  5. P. Biquard, Ann. Phys. (11) 6, 195–304, 1936.

    Google Scholar 

  6. J. Thoen, E. Vangeel and W. Van Dael, Physica, 45, 339–356, 1969.

    Article  ADS  Google Scholar 

  7. M. Eigen and L. deMaeyer, “Relaxation Methods,” in Technique of Organic Chemistry, 2nd ed., edited by S. L. Friess, E. S. Lewis and A. Weissberger, (Interscience, New York, 1963), Vol. VIII/2, pp. 895–1054.

    Google Scholar 

  8. R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley Publishing Co., Reading, Mass., 1969;

    Google Scholar 

  9. S. R. deGroot and P. Mazur, Nonequilibrium Thermodynamics, North-Holland, Amsterdam, 1969.

    Google Scholar 

  10. L. S. Garcia-Colin and S. M. T. De la Selva, Physica, Utrecht 75, 37, 1974.

    Article  ADS  Google Scholar 

  11. T. S. Margulies and W. H. Schwarz, J. Chem. Phys. 77, No. 2, 1005, 15 July 1982.

    Article  ADS  Google Scholar 

  12. W. Jost, Z. Naturforsch. Teil A2, 159, 1947; Z. Phys. Chem. 195, 317, 1950.

    Google Scholar 

  13. G. W. Castellan, Ber. Bunsenges Phys. Chem. 67, 898, 1963.

    Google Scholar 

  14. R. M. Mazo, J. Chem. Phys. 28, 1225, 1958.

    ADS  Google Scholar 

  15. T. S. Margulies and W. H. Schwarz, paper presented at the 107th Acoustical Society of America Meeting, Norfolk, VA 6–10 May 1984; “Acoustic Wave Propagation in Fluids with Coupled Chemical Reaction,” U.S. Nuclear Regulatory Commission, NUREG-0935, August 1984.

    Google Scholar 

  16. O. J. Heilman, Mat.-Fys. Medd. K. Dans. Vidensk. Selsk. 38, 1, 1972.

    Google Scholar 

  17. M. Kohler, Z. Physik 127, 40–48, 1949.

    Google Scholar 

  18. J. Meixner, Acustica 2, 101–109, 1952.

    MathSciNet  Google Scholar 

  19. E. Goldman, J. Acoust. Soc. Am. 41, 93–99 (1967).

    Google Scholar 

  20. G. S. Wang Chang and G. E. Uhlenbeck, in Studies in Statistical Mechanics, edited by J. de Boer and G. E. Uhlenbeck, North-Holland, Amsterdam, 1970. Vol. V, 1.

    Google Scholar 

  21. J. D. Foch and G. W. Ford, in Studies in Statistical Mechanics, edited by J. de Boer and G. E. Uhlenbeck, North-Holland, Amsterdam 1970, Vol. V, 103.

    Google Scholar 

  22. J. D. Foch, Jr., G. E. Uhlenbeck and M. F. Losa, Phys. Fluids 13, 1224–1232, 1972.

    Article  ADS  Google Scholar 

  23. A. Fick, Ann. Physik, 94, 59, 1855.

    ADS  Google Scholar 

  24. Ming-Nan Huang, Ph.D. Thesis, The Johns Hopkins University, 1973.

    Google Scholar 

  25. E. Goldman and L. Sirovich, Phys. Fluids 10, 1928–1940.

    Google Scholar 

  26. G. J. Prangsma, R. M. Jonkman and J. J. M. Beenakker, Physica 48, 323–330, 1970.

    Article  ADS  Google Scholar 

  27. E. Goldman and L. Sirovich, Phys. Fluids 12, 245–247, 1969.

    Article  ADS  Google Scholar 

  28. M. Greenspan, J. Acoust. Soc. Amer. 28, 644–648, 1956.

    Google Scholar 

  29. M. Greenspan, in Physical Acoustics, edited by W. P. Mason, Academic Press, 1965, Vol. II.

    Google Scholar 

  30. E. Meyer and G. Sessler, Z. Physik. 149, 15–39, 1957.

    Article  MathSciNet  ADS  Google Scholar 

  31. B. D. Coleman and W. Noll, “Simple Fluids with Fading Memory,” in “Second-Order Effects in Elasticity, Plasticity, and Fluid Dynamics,” edited by M. Reiner and D. Abir, International Symposium, Haifa, Israel, April 23–27, 1962.

    Google Scholar 

  32. B. D. Coleman and W. Noll, “Foundations of Linear Viscoelasticity,” Rev. of Modern Physics 33, 239, 1961.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley and Sons, Inc. (1980).

    Google Scholar 

  34. R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory, John Wiley and Sons (1977).

    Google Scholar 

  35. F. Bueche, J. Chem. Phys. 22, 603, 1954.

    Article  ADS  Google Scholar 

  36. P. E. Rouse, Jr., J. Chem. Phys. 21, 1272, 1953.

    Article  ADS  Google Scholar 

  37. B. H. Zimm, J. Chem. Phys. 24, 269, 1956.

    Article  MathSciNet  ADS  Google Scholar 

  38. A. J. Barlow, G. Harrison and J. Lamb, Proc. R. Soc. Lond. 282, 228, 1964.

    Article  ADS  Google Scholar 

  39. J. L. Hunter and P. R. Derdul, J. Acoust. Soc. Am. 42, 1041, 1967.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Margulies, T.S., Schwarz, W.H. (1985). Acoustic Wave Propagation in Fluids. In: Davis, S.H., Lumley, J.L. (eds) Frontiers in Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46543-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46543-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46545-1

  • Online ISBN: 978-3-642-46543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics