Skip to main content

Effects of Streamline Curvature on Turbulence

  • Conference paper
Frontiers in Fluid Mechanics

Abstract

The effects of longitudinal curvature on the turbulence in thin shear layers has received a good deal of attention from experimenters and modellers and in many-respects they are now well documented. The turbulence structure is highly sensitive to the additional mean strain rate introduced when the mean streamlines are curved in the plane of the mean shear. Turbulent energy and shear stress are reduced relative to rectilinear flow when the angular momentum of the mean flow increases in the direction of the radius of curvature, as in a two-dimensional boundary layer on a convex wall, and increased when the angular momentum decreases with increasing radius, as in concave wall flow. In contrast to laminar flow where the fractional changes in shear stress are of the same order as the shear layer thickness to the radius of curvature, measurements in turbulent boundary layes on curved walls show fractional changes an order of magnitude greater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klebanoff, P.S.: N.A.C.A. Rep. 1247 (1955).

    Google Scholar 

  2. Muck, K.C.: Ph.D. Thesis, Univ. London (1982).

    Google Scholar 

  3. Ramaprian, B.R. and Shivaprasad, B.G.: J. Fluid Mech. 85, 273 (1978).

    Article  ADS  Google Scholar 

  4. Gibson, M.M., Verriopoulos, C.A. and Vlachos, N.S.: Expts. Fluids 2, 17 (1984).

    ADS  Google Scholar 

  5. So, R.M.C. and Mellor, G.L.: J. Fluid Mech. 60, 43 (1973).

    Article  ADS  Google Scholar 

  6. Gillis, J.C. and Johnston, J.P.: Turbulent Shear Flows 2, 16 (Springer, Berlin 1980).

    Google Scholar 

  7. Kreith, F.: Mechanical Engineering 77, 1247 (1955).

    Google Scholar 

  8. Thomann, H.: J. Fluid Mech. 33, 283 (1968).

    Article  ADS  Google Scholar 

  9. Mayle, R.E., Blair, M.F. and Kopper, F.C.: Trans. A.S.M.E., J. Heat Transfer 101, 521 (1979).

    Article  ADS  Google Scholar 

  10. Prandtl, L.: N.A.C.A. TM 625 (1931).

    Google Scholar 

  11. Bradshaw, P.: J. Fluid Mech. 36, 177 (1969).

    Article  ADS  MATH  Google Scholar 

  12. Young, S.T.B.: Univ. London, Queen Mary Coll. Rep. QMC-EP 6018 (1975).

    Google Scholar 

  13. Gibson, M.M. and Launder, B.E.: J. Fluid Mech. 86, 491 (1978).

    Article  ADS  MATH  Google Scholar 

  14. Businger, J.A., Wyngaard, J.C, Izumi, Y. and Bradley, E.F.: J. Atmos. Sci. 28, 181 (1971).

    Article  ADS  Google Scholar 

  15. Simon, T.W. and Moffat, R.J.: A.S.M.E. paper 79-WA/GT-10 (1979).

    Google Scholar 

  16. Gibson, M.M. and Verriopoulos, C.A.: Expts. Fluids 2, 73 (1984).

    ADS  Google Scholar 

  17. Dakos, T., Verriopoulos, C.A. and Gibson, M.M.: J. Fluid Mech. 145, 339 (1984).

    Article  ADS  Google Scholar 

  18. Bradshaw, P.: AGARDograph 169 (1973).

    Google Scholar 

  19. Adams, E.W. and Johnston, J.P.: A.S.M.E. paper 83-GT-80 (1983).

    Google Scholar 

  20. Tavoularis, S. and Corrsin, S.: J. Fluid Mech. 104, 311 (1981).

    Article  ADS  Google Scholar 

  21. Verriopoulos, C.A.: Ph.D. Thesis, Univ. London (1983).

    Google Scholar 

  22. Launder, B.E. and Morse, A.: Turbulent Shear Flows 1, 279 (Springer, Berlin 1979).

    MATH  Google Scholar 

  23. Harris, V.G., Graham, J.A.H. and Corrsin, S.: J. Fluid Mech. 81, 657 (1977).

    Article  ADS  Google Scholar 

  24. Launder, B.E., Reece, G.J. and Rodi, W.: J. Fluid Mech. 68, 537 (1975).

    Article  ADS  MATH  Google Scholar 

  25. Champagne, F.H., Harris, V.G. and Corrsin, S.: J. Fluid Mech. 41, 81 (1970).

    Article  ADS  Google Scholar 

  26. Leslie, D.C.: J. Fluid Mech. 98, 435 (1980).

    Article  ADS  MATH  Google Scholar 

  27. Castro, I.P. and Bradshaw, P.: J. Fluid Mech. 73, 265 (1976).

    Article  ADS  Google Scholar 

  28. Townsend, A.A.: J. Fluid Mech. 98, 1 (1980).

    Article  Google Scholar 

  29. Jones, W.P. and Musonge, P.: Proc. 4th Turbulent Shear Flows Symposium, Karlsruhe (1983).

    Google Scholar 

  30. Dakos, T. and Gibson, M.M.: Unpublished note, Imperial College, London (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibson, M.M. (1985). Effects of Streamline Curvature on Turbulence. In: Davis, S.H., Lumley, J.L. (eds) Frontiers in Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46543-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46543-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46545-1

  • Online ISBN: 978-3-642-46543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics