Electronic Excitation of Molecules by Electron Impact

  • Vincent McKoy
  • Mu-Tao Lee
Part of the Lecture Notes in Chemistry book series (LNC, volume 35)


In this talk I will review the recent progress that has been made in the theoretical determination of differential and integral cross sections for the electronic excitation of molecules by low-energy electrons. Whereas there has been considerable progress in the development and application of theoretical methods for treating inelastic electron-atom scattering [1], the situation is quite different for the related molecular problem. It is well-known that this difference is ultimately due to the difficulties associated with the nonspherical nature of the electron-molecule force field. In fact, it was not until the 1960’s that a renewed interest in processes involving H2 and N2 resulted in the application of plane-wave theories to treat the excitation of electronic states in these molecules. In the last five years more advanced theories such as the distorted-wave method, the impact-parameter method, and the close-coupling method have been applied to the description of electron impact excitation of diatomic molecules. The results of these more recent applications, and their comparison with available experimental data, will be the focal point of my presentation. We will see that, although the results of some of these theoretical applications are encouraging, there are substantial disagreements between both the predictions of the different methods themselves, and with the experimental data. There clearly remains a serious need for further development of theoretical methods for the prediction of electron impact excitation cross sections of both linear and polyatomic molecules.


Differential Cross Section Electronic Excitation Integral Cross Section Inelastic Cross Section Electron Impact Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. H. Brandsen and M.R.C. McDowell, Phys. Rpts. 46, 249 (1978).CrossRefGoogle Scholar
  2. 2.
    S. Trajmar and D.C. Cartwright, in Electron-Molecule Interactions and Their Applications, edited by L.G. Christophorou (Academic, New York, 1983), Chap. 2.Google Scholar
  3. 3.
    D.C. Cartwright and A. Kuppermann, Phys. Rev. 163, 86 (1967).CrossRefGoogle Scholar
  4. 4.
    S. P. Khare, Phys. Rev. 149, 33 (1966).CrossRefGoogle Scholar
  5. 5.
    S. Chung, C.C. Lin, and E.T.P. Lee, Phys. Rev. A 6, 1340 (1975).CrossRefGoogle Scholar
  6. 6.
    S. Chung and C. C. Lin, Phys. Rev. A 6, 988 (1972).CrossRefGoogle Scholar
  7. 7a.
    D.C. Cartwright, Phys. Rev. A 2, 1331 (1970)CrossRefGoogle Scholar
  8. 7b.
    D.C. Cartwright, Phys. Rev. A 5, 1974 (1972).CrossRefGoogle Scholar
  9. 8.
    S. Chung and C. C. Lin, Phys. Rev. A 9, 1954 (1974).CrossRefGoogle Scholar
  10. 9.
    S. Chung and C. C. Lin, Phys. Rev. A 21, 1075 (1980).CrossRefGoogle Scholar
  11. 10.
    A. U. Hazi, Phys. Rev. A 23, 2232 (1981).CrossRefGoogle Scholar
  12. 11.
    M. J. Seaton, Proc. Phys. Soc. (London) 79, 1105 (1962).CrossRefGoogle Scholar
  13. 12.
    L. D. Thomas, G. Csanak, H. S. Taylor, and B.S. Yarlagadda, J. Phys. B 7, 1719 (1974).CrossRefGoogle Scholar
  14. 13.
    N.T. Padial, G.D. Meneses, F. J. da Paixão, G. Csanak, and D.C. Cartwright, Phys. Rev. A. 23, 2194 (1981).CrossRefGoogle Scholar
  15. 14.
    T.N. Rescigno, C.W. McCurdy Jr., V. McKoy, and C. F. Bender, Phys. Rev. A 13, 216 (1976).CrossRefGoogle Scholar
  16. 15.
    A. W. Fliflet, and V. McKoy, Phys. Rev. A 21, 1863 (1980).CrossRefGoogle Scholar
  17. 16.
    A. W. Fliflet, V. McKoy, and T.N. Rescigno, J. Phys. B. 12, 3281 (1979).CrossRefGoogle Scholar
  18. 17.
    A. W. Fliflet, V. McKoy, and T. N. Rescigno, Phys. Rev. A 21, 788 (1980).CrossRefGoogle Scholar
  19. 18.
    M. T. Lee, R. R. Lucchese, and V. McKoy, Phys. Rev. A 26, 3240 (1982).CrossRefGoogle Scholar
  20. 19.
    M. T. Lee, and V. McKoy, Phys. Rev. A 28, 697 (1983) and ibid (to be published) 1984.CrossRefGoogle Scholar
  21. 20.
    M. T. Lee and V. McKoy, J. Phys. B 16, 3971 (1982).Google Scholar
  22. 21.
    M. T. Lee and V. McKoy, J. Phys. B 16, 657 (1983).CrossRefGoogle Scholar
  23. 22.
    T. N. Rescigno, C. W. McCurdy Jr., and V. McKoy, J. Phys. Β 7, 2396 (1974).Google Scholar
  24. 23.
    H. P. Kelly, Phys. Rev. 136, Β896 (1964).CrossRefGoogle Scholar
  25. 24.
    D. H. Madison and W. N. Shelton, Phys. Rev. A 7, 499 (1973).CrossRefGoogle Scholar
  26. 25.
    G. Csanak, J. Phys. B 7, L203 (1974).CrossRefGoogle Scholar
  27. 26.
    R. R. Lucchese, D. K. Watson, and V. McKoy, Phys. Rev. A 22, 421 (1980).CrossRefGoogle Scholar
  28. 27.
    S. Chung and C. C. Lin, Phys. Rev. A 17, 1874 (1978).CrossRefGoogle Scholar
  29. 28.
    C. A. Weatherford, Phys. Rev. A 22, 2519 (1980).CrossRefGoogle Scholar
  30. 29.
    T. K. Holley, S. Chung, C. C. Lin, and E. T. P. Lee, Phys. Rev. A 24, 2946 (1981).CrossRefGoogle Scholar
  31. 30.
    K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2473 (1981).CrossRefGoogle Scholar
  32. 31.
    K. Takatsuka and V. McKoy, Phys. Rev. A (to be published).Google Scholar
  33. 32.
    Marco A. P. Lima, Thomas L. Gibson, K. Takatsuka, and V. McKoy, Phys. Rev. A (to be published).Google Scholar
  34. 33.
    S. Trajmar, D. C. Cartwright, J. K. Rice, R. T. Brinkmann, and A. Kuppermann, J. Chem. Phys. 49, 5464 (1968).CrossRefGoogle Scholar
  35. 34.
    S. J. B. Corrigan, J. Chem. Phys. 43, 4381 (1965).CrossRefGoogle Scholar
  36. 35.
    S. K. Srivastava and S. Jensen, J. Phys. B 10, 3341 (1977).CrossRefGoogle Scholar
  37. 36.
    D. C Cartwright, A. Chutjian, S. Trajmar, and W. Williams, Phys. Rev. A 16, 1013 (1977).CrossRefGoogle Scholar
  38. 37.
    A. Chutjian, D. C Cartwright, and S. Traymar, Phys. Rev. A 16, 1052 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Vincent McKoy
    • 1
  • Mu-Tao Lee
    • 1
  1. 1.Arthur Amos Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations