Skip to main content

Sigmoidal Systems and Layer Analysis

  • Conference paper
Competition and Cooperation in Neural Nets

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 45))

Abstract

My purpose here is to describe a variety of wave-like phenomena which depend, for their existence, on the nonlinear nature of the underlying laws governing the dynamics of the medium. It will be assumed that these underlying laws can be expressed in terms of field equations of reaction-diffusion type, although some of the methods which have been developed for such systems have also been extended to other types of evolutionary laws. I make no claim that reaction-diffusion systems have a direct bearing on acceptable models for large scale neural nets. But they exhibit patterns and waves suggestive of phenomena expected in such nets, and it is hoped that their theory, which is moderately well developed, may provide a fruitful source of methods for the mathematical analysis of the neural models. Indeed, some parts of the theory, dealing for example with small-amplitude phenomena, have already been extended to the latter context (Ermentrout 1980; Ermentrout and Cowan 1979, 1980a, 1980b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Aronson and H. F. Weinberger 1978, Multidimensional nonlinear diffusion arising in population genetics, Advances in Math. 30, 33–76.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. R. Bush and F. E. Fendell 1970, Asymptotic analysis of laminar flame propagation of general Lewis numbers, Combustion Science and Technology 1, 421–428.

    Article  Google Scholar 

  3. G. Carpenter 1977, Periodic solutions of nerve impulse equations, J. Math. Anal. Appl. 57, 152–173.

    Google Scholar 

  4. G. Carpenter 1977, A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differential Equations 23, 335–367.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Casten, H. Cohen, and P. Lagerstrom 1975, Perturbation analysis of an approximation to Hodgkin-Huxley theory, Quart. Appl. Math 32, 365–402.

    Google Scholar 

  6. H. Cohen 1971, Nonlinear diffusion problems, Studies in Appl. Math. 7, Math. Assoc. of America and Prentice Hall, 27–63.

    Google Scholar 

  7. C. Conley 1975, On travelling wave solutions of nonlinear diffusion equations, Dynamic Systems Theory and Appl. (J. Moser, Editor), Lecture Notes in Physics, Vol. 38, Springer-Verlag Berlin and New York, 498–510.

    Google Scholar 

  8. C. Conley and P. Fife 1982, Critical manifolds, travelling waves, and an example from population genetics, J. Math. Biology, to appear.

    Google Scholar 

  9. C. Conley and R. Gardner 1981, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, preprint.

    Google Scholar 

  10. C. C. Conley and J. A. Smoller 1976, Remarks on travelling wave solutions of nonlinear diffusion equations, Structural Stability, The Theory of Catastrophes, and Applications in the Sciences (P. Hilton, Ed.), Lecture Notes in Math., Vol. 525, Springer-Verlag, Berlin and New York.

    Google Scholar 

  11. S. R. Dunbar 1981, Travelling wave solutions of diffusive Volterra-Lotka interaction equations, Ph.D. Thesis, University of Minnesota.

    Google Scholar 

  12. G. B. Ermentrout 1980, Stationary homogeneous media I. One dimensional, isotropic media, preprint.

    Google Scholar 

  13. G. B. Ermentrout and J. D. Cowan 1979, Temporal oscillations in neuronal nets, J. Math. Biol., 7, 265–280.

    Google Scholar 

  14. G. B. Ermentrout and J. D. Cowan 1980, Secondary bifurcation in neuronal nets, SIAM J. Appl. Math., 39, 323–340.

    Google Scholar 

  15. G. B. Ermentrout and J. D. Cowan 1980, Large scale spatially organized activity in neural nets, SIAM J. Appl. Math., 38, 1–21.

    Google Scholar 

  16. P. C. Fife 1981 On the question of the existence and nature of homogeneous-center target patterns in the BelousovZhabotinskii reagent. pp. 45–56 in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, O. Axeisson, L. S. Frank, A. Van der Sluis, eds., Mathematics Studies 47, North-Holland, Amsterdam.

    Google Scholar 

  17. P. C. Fife 1979, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag.

    Google Scholar 

  18. P. C. Fife 1976a, Boundary and interior transition layer phenomena for pairs of second order differential equations, J. Math. Anal. and Appls. 54, 497–521.

    Google Scholar 

  19. P. C. Fife 1976b, Pattern formation in reacting and diffusing systems, J. Chem. Phys. 64, 854–864.

    Google Scholar 

  20. P. C. Fife 1976c, Singular perturbation and wave front techniques in reaction-diffusion problems, in: SIAM-AMS Proceedings, Symposium on Asymptotic Methods and Singular Perturbations, New York, 23–49.

    Google Scholar 

  21. P. C. Fife 1977, Asymptotic analysis of reaction-diffusion wave fronts, Rocky Mountain J. Math., 7, 389–415.

    Google Scholar 

  22. P. C. Fife and W. M. Greenlee 1974, Interior transition layers for elliptic boundary value problems with a small parameter, Usp. Matem. Nauk SSSR, 24, 103–130; Russ. Math. Surveys 29, 103–131.

    Google Scholar 

  23. P. C. Fife and J. B. McLeod 1977, The approach h of solutions of nonlinear diffusion equations to travelling front solutions, Arch Rational Mech. Anal. 65, 335–361. Also: Bull. Amer. Math. Soc. 81, 1075–1078 (1975).

    Google Scholar 

  24. H. Fujii, M. Mimura and Y. Nishiura 1981, A picture of global bifurcation diagram in ecological interacting and diffusing systems, preprint.

    Google Scholar 

  25. R. Gardner and J. Smoller 1982, The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index, preprint.

    Google Scholar 

  26. S. P. Hastings 1974, The existence of periodic solutions to Nagumo’s equation, Quart. J. Math. Oxford, Ser. 25, 369–378.

    Google Scholar 

  27. S. P. Hastings 1976, On travelling wave solutions of the Hodgkin-Huxley equations, Arch. Rational Mech. Anal., 60, 229–257.

    Google Scholar 

  28. S. P. Hastings 1976, On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations, Quart, J. Math. Oxford, Ser. 27, 123–134.

    Google Scholar 

  29. Ya. I. Kanel’ 1962, On the stabilization of solutions of the Cauchy problem for the equations arising in the theory of combustion, Mat. Sbornik 59, 245–288.

    Google Scholar 

  30. J. P. Keener 1980, Waves in excitable media, SIAM J. Appl. Math. 39, 528–548.

    Google Scholar 

  31. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov 1937, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjul. Moskovskovo Gos. Univ. 17, 1–72.

    Google Scholar 

  32. N. Kopell and L. N. Howard 1973, Plane wave solutions to reaction-diffusion equations, Studies in Appl. Math. 52, 291–328.

    Google Scholar 

  33. P. Ortoleva and J. Ross 1975, Theory of propagation of discontinuities in kinetic systems with multiple time scales: fronts, front multiplicity, and pulses, J. Chem. Phys. 63, 3398–3408.

    Google Scholar 

  34. L. A. Ostrovskii and V. G. Yahno 1975, The formation of pulses in an excitable medium, Biofizika 20, 489–493.

    Google Scholar 

  35. L. M. Pismen 1978, Multiscale propagation phenomena in reaction-diffusion systems, preprint.

    Google Scholar 

  36. J. Rinzel and D. Terman 1981, Propagation phenomena in a bistable reaction diffusion system, preprint.

    Google Scholar 

  37. A. M. Turing 1953, The chemical basis of morphogenesis Phil. Trans. Roy. Soc. Lond. B237, 37–72.

    Google Scholar 

  38. J. Tyson 1982, On scaling and reducing the Field-Koros-Noyes mechanism of the Belousov-Zhabotinskii reaction, preprint.

    Google Scholar 

  39. J. Tyson 1979, Oscillations, bistability, and echo waves in models of the Belousov-Zhabotinskii reaction, Ann. N. Y. Acad. Sci. 36, 279–295.

    Google Scholar 

  40. J. Tyson and P. C. Fife 1980, Target patterns in a realistic model of the Belousov-Zhabotinskii Reaction, J. Chem. Physics 73, 2224–2237.

    Google Scholar 

  41. K. Uchiyama 1978, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. of Kyoto University 18, 453–508.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fife, P.C. (1982). Sigmoidal Systems and Layer Analysis. In: Amari, Si., Arbib, M.A. (eds) Competition and Cooperation in Neural Nets. Lecture Notes in Biomathematics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46466-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46466-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11574-8

  • Online ISBN: 978-3-642-46466-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics