Advertisement

Diphtheria Toxin and Exotoxin A from Pseudomonas aeruginosa

  • R. J. Collier
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 2)

Abstract

A marked resurgence of interest in bacterial protein toxins has occurred in recent years, after a long period of relative neglect. Many of the classical toxins have been studied in greater depth, and new toxins have been discovered as well. As a result of the expanded interest and efforts there now exists a substantial and rapidly growing body of knowledge about the structures and activities of bacterial toxins from which one can begin to make meaningful generalizations.

Keywords

Pseudomonas Aeruginosa Cholera Toxin Disulfide Bridge Nicotinamide Adenine Dinucleo Diphtheria Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beugnier, N., Zanen, J.: Diphtheria toxin: The effect of nitration and reductive methylation on enzymatic activity and toxicity. Biochim. Biophys. Acta 490, 225–234 (1977)PubMedGoogle Scholar
  2. Bizzini, B., Turpin, A.: Les toxines bacteriennes. Recherche 7, 444–451 (1976)Google Scholar
  3. Bjorn, M.J., Vasil, M.L., Sadoff, J.C., Iglewski, B.H.: Incidence of exotoxin production by Pseudomonas species. Infect. Immun. 16, 362–366 (1977)PubMedGoogle Scholar
  4. Bonventre, P.F., Saelinger, C.B., Ivins, B., Woscinski, C., Amorini, M.: Interaction of cultured mammalian cells with (125I) diphtheria toxin. Infect. Immun. 11, 675–684 (1975)PubMedGoogle Scholar
  5. Boquet, P.: Transport of diphtheria toxin fragment A across mammalian cell membranes. Biochem. Biophys. Res. Commun. 75, 696–702 (1977)CrossRefGoogle Scholar
  6. Boquet, P., Pappenheimer, A.M., Jr.: Interaction of diphtheria toxin with mammalian cell membranes. J. Biol. Chem. 251, 5770–5778 (1976)PubMedGoogle Scholar
  7. Boquet, P., Silverman, M.S., Pappenheimer, A.M., Jr., Vernon, W.B.: Binding of Triton X-100 to diphtheria toxin, cross-reacting material 45, and their fragments. Proc. Natl. Acad. Sci. USA 73, 4449–4453 (1976)PubMedCrossRefGoogle Scholar
  8. Burgoyne, R.D., Wolstenholme, J., Stephen, J.: The preparation of stable, biologically active B fragment of diphtheria toxin. Biochem. Biophys. Res. Commun. 71, 920–925 (1976)PubMedCrossRefGoogle Scholar
  9. Chung, D.W., Collier, R.J.: Enzymatically active peptide from the adenosine diphosphate ribosylating toxin of Pseudomonas aeruginosa. Infect. Immun. 16, 832–841 (1977 a)PubMedGoogle Scholar
  10. Chung, D.W., Collier, R.J.: The mechanism of ADP-ribosylation of elongation factor 2 catalyzed by fragment A from diphtheria toxin. Biochim. Biophys. Acta 483, 248–257 (1977 b)PubMedGoogle Scholar
  11. Clarke, P.H., Richmond, M.H.: Genetics and biochemistry of Pseudomonas. London, New York, Sydney, Toronto: Wiley 1975Google Scholar
  12. Collier, R.J.: Effect of diphtheria toxin on protein synthesis: Inactivation of one of the transfer factors. J. Mol. Biol. 25, 83–98 (1967)PubMedCrossRefGoogle Scholar
  13. Collier, R.J.: Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39, 54–85 (1975)PubMedGoogle Scholar
  14. Collier, R.J.: Inhibition of protein synthesis by exotoxins from Corynebacterium diphtheriae and Pseudomonas aeruginosa. In: The specificity and action of animal, bacterial, and plant toxins, Series B. Cuatrecases, P. (ed.), Vol. 1, pp. 67–98. London: Chapman and Hall 1976Google Scholar
  15. Collier, R.J., Kandel, J.: Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J. Biol. Chem. 246, 1496–1503 (1971)PubMedGoogle Scholar
  16. Collier, R.J., Pappenheimer, A.M., Jr.: Studies on the mode of action of diphtheria toxin. I. Phosphorylated intermediates in normal and intoxicated HeLa cells. J. Exp. Med. 120, 1007–1018 (1964a)PubMedCrossRefGoogle Scholar
  17. Collier, R.J., Pappenheimer, A.M., Jr.: Studies on the mode of action of diphtheria toxin. II. Effect of toxin on amino acid incorporation in cell-free systems. J. Exp. Med. 120, 1019–1039 (1964 b)PubMedCrossRefGoogle Scholar
  18. DeLange, R.J., Drazin, R.E., Collier, R.J.: Amino-acid sequence of fragment A, an enzymically active fragment from diphtheria toxin. Proc. Natl. Acad. Sei. USA 73, 69–72 (1976)CrossRefGoogle Scholar
  19. Dirkx, J.: La toxine diphterique: biologie moleculaire d’une infection. Arch. Int. Physiol. Biochim. 82, 157–170 (1974)PubMedCrossRefGoogle Scholar
  20. Drazin, R., Kandel, J., Collier, R.J.: Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule. J. Biol. Chem. 246, 1504–1510 (1971)PubMedGoogle Scholar
  21. Duncan, J.L., Groman, N.B.: Activity of diphtheria toxin. II. Early events in the intoxication of HeLa cells. J. Bacteriol. 98, 973–969 (1969)Google Scholar
  22. Everse, J., Lappi, D.A., Beglau, J.M., Lee, C.L., Kaplan, N.O.: Investigations into the relationship between structure and function of diphtheria toxin. Proc. Natl. Acad. Sci. USA 74, 472–476 (1977)PubMedCrossRefGoogle Scholar
  23. Finkelstein, R.A.: Cholera. CRC Crit. Rev. Microbiol. 2, 553–623 (1973)CrossRefGoogle Scholar
  24. Finkelstein, R.A.: Progress in the study of cholera and related enterotoxin. In: Mechanisms in bacterial toxinology. Bernheimer, A.W. (ed.), pp. 53–84. New York, London, Sidney, Toronto: Wiley 1976Google Scholar
  25. Gabliks, J., Solotorovsky, M.: Cell culture reactivity to diphtheria, staphylococcus, tetanus, and Escherichia coli toxins. J. Immunol. 88, 505–512 (1962)PubMedGoogle Scholar
  26. Gill, D.M.: Mechanism of action of cholera toxin. Adv. Cyclic. Nucleotide Res. 8, 85–118 (1977)PubMedGoogle Scholar
  27. Gill, D.M., Dinius, L.L.: Observations on the structure of diphtheria toxin. J. Biol. Chem. 246, 1485–1491 (1971)PubMedGoogle Scholar
  28. Gill, D.M., Pappenheimer, A.M., Jr.: Structure-activity relationships in diphtheria toxin. J. Biol. Chem. 246, 1492–1495 (1971)PubMedGoogle Scholar
  29. Gill, D.M., Steinhaus, D.M.: Modification of diphtheria toxin by NAD+. J. Hyg. Epidemiol. Microbiol. Immunol. 18, 316–323 (1974)PubMedGoogle Scholar
  30. Gill, D.M., Pappenheimer, A.M., Jr., Uchida, T.: Diphtheria toxin, protein synthesis, and the cell. Fed. Proc. 32, 1508–1515 (1973)PubMedGoogle Scholar
  31. Goor, R.S.: New form of diphtheria toxin. Nature (London) 217, 1051–1053 (1968)CrossRefGoogle Scholar
  32. Goor, R.S., Pappenheimer, A.M., Jr.: Studies on the mode of action of diphtheria toxin. IV. Specificity of the cofactor (NAD) requirement for toxin action in cell-free systems. J. Exp. Med. 126, 913–921 (1967)PubMedCrossRefGoogle Scholar
  33. Honjo, T., Nishizuka, Y., Hayaishi, O., Kato, I.: Diphtheria toxin-dependent adenosine diphosphate ribosylation of amino-acyl transferase II and inhibition of protein synthesis. J. Biol. Chem. 243, 3553–3555 (1968)PubMedGoogle Scholar
  34. Honjo, T., Nishizuka, Y., Kato, I., Hayaishi, O.: Adenosine diphosphate ribosylation of amino-acyl transferase II and inhibition of protein synthesis by diphtheria toxin. J. Biol. Chem. 246, 4251–4260 (1971)PubMedGoogle Scholar
  35. Iglewski, B.H., Kabat, D.: NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc. Natl. Acad. Sci. USA 72, 2284–2288 (1975)PubMedCrossRefGoogle Scholar
  36. Iglewski, B., Elwell, L.P., Liu, P.V., Kabat, D.: ADP-ribosylation of elongation factor 2 by Pseudomonas aeruginosa exotoxin A and by diphtheria toxin. In: Proc. 4th Int. Symp. Interconversion of Enzymes. Shalfiel, S. (ed.), pp. 150–155. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  37. Ivins, B., Saelinger, C.B., Bonventre, P.F., Woscinski, C.: Chemical modulation of diphtheria toxin action on cultured mammalian cells. Infect. Immun. 665–674 (1975)Google Scholar
  38. Johnson, W., Kuchler, R.J., Solotorovsky, M.: Site in cell-free protein synthesis sensitive to diphtheria toxin. J. Bacteriol. 96, 1089–1098 (1968)PubMedGoogle Scholar
  39. Kandel, J., Collier, R.J., Chung, D.W.: Interaction of fragment A from diphtheria toxin with nicotinamide adenine dinucleotide. J. Biol. Chem. 249, 2088–2097 (1974)PubMedGoogle Scholar
  40. Kim, K., Groman, N.B.: Mode of inhibition of diphtheria toxin by ammonium chloride. J. Bacteriol. 90, 1557–1562 (1965)PubMedGoogle Scholar
  41. Leppla, S.H.: Large scale purification and characterization of the exotoxin of Pseudomonas aeruginosa. Infect. Immun. 14, 1077–1086 (1976)PubMedGoogle Scholar
  42. Liu, P.V.: The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. III. Identity of the lethal toxin produced in vitro and in vivo. J. Infect. Dis. 116, 481–489 (1966)PubMedCrossRefGoogle Scholar
  43. Liu, P.V., Hsieh, H.: Exotoxins of Pseudomonas aeruginosa. III. Characteristics of antitoxin A. J. Infect. Dis. 128, 520–526 (1973)PubMedCrossRefGoogle Scholar
  44. Michel, A., Dirkx, J.: Occurrence of tryptophan in the enzymically active site of diphtheria toxin fragment A. Biochim. Biophys. Acta 491, 286–295 (1977)PubMedGoogle Scholar
  45. Middlebrook, J.L., Dorland, R.B.: Differential chemical protection of mammalian cells from the exotoxins of Corynebacterium diphtheriae and Pseudomonas aeruginosa. Infect. Immun. 16, 232–239 (1977)PubMedGoogle Scholar
  46. Moehring, T.J., Moehring, J.M., Kuchler, R.J., Solotorovsky, M.: The response of cultured mammalian cells to diphtheria toxin. I. Amino acid transport, accumulation, and incorporation in normal and intoxicated sensitive cells. J. Exp. Med. 126, 407–422 (1967)PubMedCrossRefGoogle Scholar
  47. Moss, J., Vaughan, M.: Mechanism of action of choleragen. J. Biol. Chem. 252, 2455–2457 (1977)PubMedGoogle Scholar
  48. Murphy, J.R.: Structure activity relationships in diphtheria toxin. In: Mechanisms in bacterial toxinology. Bernheimer, A.W. (ed.), pp. 31–52. New York, London, Sidney, Toronto: Wiley 1976Google Scholar
  49. Nicolson, G.L.: Ultrastructural analysis of toxin binding and entry into mammalian cells. Nature (London) 251, 628–630 (1974)CrossRefGoogle Scholar
  50. Pappenheimer, A.M., Jr.: Diphtheria toxin. Annu. Rev. Biochem. 46, 69–94 (1977)PubMedCrossRefGoogle Scholar
  51. Pappenheimer, A.M., Jr., Gill, D.M.: Diphtheria. Science 182, 353–358 (1973)PubMedCrossRefGoogle Scholar
  52. Pesce, A., Casoli, C., Schito, G.C.: Rifampicin-resistant RNA polymerase and NAD transferase activities in coliphage N4 virions. Nature (London) 262, 412–414 (1976)CrossRefGoogle Scholar
  53. Pollack, M., Callahan, L.T., III, Taylor, N.S.: Neutralizing antibody to Pseudomonas aeruginosa exotoxin in human sera: Evidence for in vivo toxin production during infections. Infect. Immun. 14, 942–947 (1976)PubMedGoogle Scholar
  54. Pollack, M., Taylor, N.S., Callahan, L.T., III.: Exotoxin production by clinical isolates of Pseudomonas aeruginosa. Infect. Immun. 15, 776–780 (1977)PubMedGoogle Scholar
  55. Reylveld, E.H.: Formation de la toxine diphterique lourde. C.R. Acad. Sci. Paris 270(D), 410–413 (1970)Google Scholar
  56. Richter, D., Lipmann, F.: Separation of mitochondrial and cytoplasmic peptide chain elongation factors from yeast. Biochemistry 9, 5065–5070 (1970)PubMedCrossRefGoogle Scholar
  57. Robb, L.A.: Separation of diphtheria toxin proteins. Can. J. Microbiol. 12, 573–579 (1966)PubMedCrossRefGoogle Scholar
  58. Robinson, E.A., Henriksen, O., Maxwell, E.S.: Elongation factor 2. Amino acid sequence at the site of adenosine diphosphate ribosylation. J. Biol. Chem. 249, 5088–5093 (1974)PubMedGoogle Scholar
  59. Skorko, R., Zillig, W., Rohrer, H., Fujiki, H., Mailhammer, R.: Purification and properties of the NAD+: Protein ADP-ribosyltransferase responsible for the T4-phage-induced modification of the subunit of DNA-dependent RNA polymerase of Escherichia coli. Eur. J. Biochem. 79, 55–66 (1977)PubMedCrossRefGoogle Scholar
  60. Strauss, N.: The effect of diphtheria toxin on the metabolism of HeLa cells. II. Effect on nucleic acid metabolism. J. Exp. Med. 112, 351–359 (1960)PubMedCrossRefGoogle Scholar
  61. Strauss, N., Hendee, E.D.: The effect of diphtheria toxin on the metabolism of HeLa cells. J. Exp. Med. 109, 144–163 (1959)CrossRefGoogle Scholar
  62. Uchida, T., Pappenheimer, A.M., Jr., Harper, A.A.: Reconstitution of diphtheria toxin from two nontoxic cross-reacting mutant toxins. Science 175, 901–903 (1972)PubMedCrossRefGoogle Scholar
  63. Uchida, T., Pappenheimer, A.M., Jr., Gregory, R.: Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem. 248, 3838–3844 (1973)PubMedGoogle Scholar
  64. Vasil, M.L., Kabat, D., Iglewski, B.H.: Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa. Infect. Immun. 16, 353–361 (1977)PubMedGoogle Scholar
  65. Zanen, J., Muyldermans, G., Beugnier, N.: Competitive antagonists of the action of diphtheria toxin in HeLa cells. FEBS Lett. 66, 261–263 (1976)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • R. J. Collier

There are no affiliations available

Personalised recommendations