• D. Grunberger
  • G. Grunberger
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 2)


Roblin et al. in 1945 observed that an inclusion of 8-azaguanine in the bacterial medium inhibited the growth of Escherichia coli. Addition of guanine to the medium reversed this inhibition. In 1949 Kidder and Dewey confirmed these findings when the analog inhibited multiplication of Tetrahymena geleii. Subsequently, several investigators proved 8-azaguanine to be an inhibitor of the chick embryo (Younger et al., 1950), the Lucerne mosaic virus (Matthews, 1952), the Psittacosis virus (Morgan, 1952), human glioblastomas (Peterson and Murray, 1953), and tobacco mosaic virus (Matthews, 1954). Inhibition of growth of some transplanted mouse tumors was also shown (Kidder et al., 1949). The analog was effective against a variety of murine carcinomas and certain leukemias (Burchenal et al., 1949). It was possible to reverse the inhibition in several of these by simultaneous addition of guanine (Law, 1950; Kidder et al., 1951). Hirschberg et al. (1952) found that antimetaboliteresistant tumors had high azaguanine deaminase activity, while the activity in the susceptible tumors was low or negligible. The 8-azaguanine was enzymatically deaminated to 8-azaxanthine, which had no carcinostatic activity. Interference with this deamination led to a potentiation of the toxic and carcinostatic actions of the analog. Despite exhaustive research, however, no useful role has been found for 8-azaguanine in cancer chemotherapy.


Tobacco Mosaic Virus Bacillus Cereus Purine Analogue Lucerne Mosaic Virus Guanine Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brockman, R.W., Sparks, M.C., Simpson, M.S.: A comparison of the metabolism of purines and purine analogs by susceptible and drug-resistant bacterial and neoplastic cells. Biochim. Biophys. Acta 26, 671 (1957)PubMedCrossRefGoogle Scholar
  2. Brockman, R.W., Sparks, C., Hutchison, D.J., Slipper, H.E.: A mechanism of resistance to 8-azaguanine I. Microbiological studies on the metabolism of purines and 8-azaguanines. Cancer Res. 19, 177 (1959)PubMedGoogle Scholar
  3. Burchenal, J.H., Johnston, S.F., Burchenal, J.R., Kushida, M.N., Robinson, E., Stock, C.C.: Chemotherapy of leukemia. IV. Effect of folic acid derivatives on transplanted mouse leukemia. Proc. Soc. Exp. Biol. Med. 71, 381 (1949)PubMedGoogle Scholar
  4. Chantrenne, H.: Changes in patterns of nucleic acid and protein synthesis caused by a purine analogue. J. Cell Comp. Physiol. (Suppl.) 64, 149 (1964)CrossRefGoogle Scholar
  5. Chantrenne, H., Devreux, S.: Dissociation of the synthesis of nucleic acids from that of protein by a purine analogue. Exp. Cell Res. (Suppl.) 6, 152 (1958)Google Scholar
  6. Chantrenne, H., Devreux, S.: Restoration de la synthese d’enzymes après inhibition per l’azaguanine. Biochim. Biophys. Acta 41, 239 (1960)PubMedCrossRefGoogle Scholar
  7. Chantrenne, H., LeClercq-Calingaert, H.: Secondary effect of 8-azaguanine on the induced or constitutive synthesis of penicillinase in B. cereus. Biochim. Biophys. Acta 72, 87 (1963)CrossRefGoogle Scholar
  8. Chu, E.H.Y., Brimer, P., Jacobson, K.B., Merrian, E.V.: Mammalian cell genetics. I. Selection and characterization of mutations auxotrophic for 1-glutamine or resistant to 8-azaguanine in Chinese hamster cells in vitro. Genetics 62, 359 (1969)PubMedGoogle Scholar
  9. Clarke, P.H., Meadow, P.H.: The effect of 8-azaguanine on the inducible oxidation of guanine by Pseudomonas aeruginosa. J. Gen. Microbiol. 44, 195 (1966)Google Scholar
  10. Davidson, J.D., Bradley, T.R., Roosa, R.A., Law, L.W.: Purine nucleotide pyrophosphorylases in 8-azaguanine sensitive and resistant leukemias. J. Natl. Cancer Inst. 29, 789 (1962)PubMedGoogle Scholar
  11. Finkelstein, M., Winters, W.D., Thomas, P.A., Davison, C., Smith, P.K.: The effect of 8-azaguanine on tissue metabolism in mice bearing sarcoma 37. Cancer Res. 11, 807 (1951)PubMedGoogle Scholar
  12. Grunberger, D.: The character and function of ribosomes from 8-azaguanine-treated cells of Bacillus cereus. Coll. Czech. Chem. Commun. 30, 128 (1965)Google Scholar
  13. Grunberger, D., Mandel, H.G.: Enhanced messenger activity of RNA from 8-azaguanine-treated Bacillus cereus. Mol. Pharm. 1, 157 (1965)Google Scholar
  14. Grunberger, D., Maslova, R.N., Sorm, F.: Effect of 8-azaguanine on the synthesis of pulse-labelled ribonucleic acid in Bacillus cereus. Coll. Czech. Chem. Commun. 29, 152 (1964)Google Scholar
  15. Grunberger, D., Meissner, L., Holy, A., Sorm, F.: The effect of polymers and trinucleoside diphosphates containing 8-azaguanine upon the binding of [14C]valine-sRNA to ribosomes. Biochim. Biophys. Acta 119, 432 (1966a)PubMedGoogle Scholar
  16. Grunberger, D., O’Neal, C., Nirenberg, M.: Stimulation of amino acid incorporation into protein by polyuridylic-8-azaguanylic acid. Biochim. Biophys. Acta 119, 581 (1966 b)PubMedGoogle Scholar
  17. Grunberger, D., Meissner, L., Holy, A., Sorm, F.: The coding properties of polymers and trinucleoside diphosphates containing 8-azaguanosine. Coll. Czech. Chem. Commun. 32, 2625 (1967)Google Scholar
  18. Grunberger, D., Holy, A., Sorm, F.: Synthesis and coding properties of 8-azaguanosine-containing triribonucleoside diphosphates. Biochim. Biophys. Acta 161, 147 (1968)PubMedGoogle Scholar
  19. Hirschberg, E., Kream, J., Gellhorn, A.: Enzymatic deamination of 8-azaguanine in normal and neoplastic tissues. Cancer Res. 12, 524 (1952)PubMedGoogle Scholar
  20. Hollinshead, A.C.: Incorporation of 8-azaguanine and growth inhibition in mammalian spinner cultures. Exp. Cell. Res. 34, 144 (1964)PubMedCrossRefGoogle Scholar
  21. Karon, M., Weissman, S., Meyer, C., Henry, P.: Studies of DNA, RNA and protein synthesis in cultured human cells exposed to 8-azaguanine. Cancer Res. 25, 185 (1965)PubMedGoogle Scholar
  22. Kelle, G.P., Gots, J.S.: Alterations in purine nucleotide pyrophosphorylases and resistance to purine analogs. Biochim. Biophys. Acta 53, 166 (1961)CrossRefGoogle Scholar
  23. Kidder, G.W., Dewey, V.C.: The biological activity of substituted purines. J. Biol. Chem. 179, 181 (1949)PubMedGoogle Scholar
  24. Kidder, G.W., Dewey, V.C., Parks, R.E., Jr., Woodside, G.C.: Purine metabolism in Tetrahymena and its relation to malignant cells in mice. Science 109, 511 (1949)PubMedCrossRefGoogle Scholar
  25. Kidder, G.W., Dewey, V.C., Parks, R.E., Jr., Woodside, G.C: Further evidence on the mode of action of 8-azaguanine (guanazolo) in tumor inhibition. Cancer Res. 11, 204 (1951)PubMedGoogle Scholar
  26. Klubes, P., Mandel, H.G.: Effects of purine nucleoside triphosphates on amino acid incorporation in a cell-free system from 8-azaguanine-treated Bacillus cereus. Biochim. Biophys. Acta 129, 594 (1966)PubMedGoogle Scholar
  27. Kwan, S.W., Webb, T.E.: Study of the mechanism of polyribosome breakdown induced in the regenerating liver by 8-azaguanine. J. Biol. Chem. 242, 5542 (1967)PubMedGoogle Scholar
  28. Kwan, S.W., Webb, T.E.: Differential sensitivity of the protein synthesizing system of rat liver to 8-azaguanine. Life Sci. 9, 975 (1970)CrossRefGoogle Scholar
  29. Lasnitzky, I., Matthews, R.E.F., Smith, J.D.: Incorporation of 8-azaguanine into nucleic acids. Nature (London) 173, 346 (1954)CrossRefGoogle Scholar
  30. Law, L.W.: Studies of the effects of a guanine analog on acute lymphoid leukemia of mice. Cancer Res. 10, 186 (1950)PubMedGoogle Scholar
  31. Levin, D.H.: The polymerization of 8-azaguanosine 5′-diphosphate by polynucleotide phosphorylase. Biochim. Biophys. Acta 61, 75 (1962)PubMedGoogle Scholar
  32. Levin, D.H.: The incorporötion of 8-azaguanine into soluble ribonucleic acid of Bacillus cereus. J. Biol. Chem. 238, 1098 (1963)PubMedGoogle Scholar
  33. Levin, D.H.: Amino acid acceptor and transfer functions of sRNA containing 8-azaguanine. Biochem. Biophys. Res. Commun. 19, 654 (1965)PubMedCrossRefGoogle Scholar
  34. Levin, D.H.: Evidence for an active messenger ribonucleic acid containing 8-azaguanine. Biochemistry 5, 1618(1966)PubMedCrossRefGoogle Scholar
  35. Levin, D.H., Litt, M.: Studies on the secondary structure of soluble ribonucleic acid containing 8-azaguanine. J. Mol. Biol. 14, 506 (1965)PubMedCrossRefGoogle Scholar
  36. Levinthal, C., Keynan, A., Higa, A.: Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc. Natl. Acad. Sci. USA 48, 1631 (1962)PubMedCrossRefGoogle Scholar
  37. Levitan, I.B., Webb, T.E.: Modification by 8-azaguanine of the effects of hydrocortisone on the induction and inactivation of tyrosine transaminase of rat liver. J. Biol. Chem. 244, 341 (1969)PubMedGoogle Scholar
  38. Levitan, I.B., Webb, T.E.: Posttranscriptional control in the steroid mediated induction of hepatic tyrosine transaminase. Science 167, 283 (1970)PubMedCrossRefGoogle Scholar
  39. Littlefield, J.W.: The inosinic acid pyrophosphorylase activity of mouse fibroblasts partially resistant to 8-azaguanine. Proc. Natl. Acad. Sci. USA 50, 568 (1963)PubMedCrossRefGoogle Scholar
  40. Maclntyre, W.M., Singh, P., Werkema, M.S.: The crystal and molecular structure of 8-azaguanine monohydrate. Biophys. J. 5, 697 (1965)CrossRefGoogle Scholar
  41. Mahadevan, P.R., Bhagwat, A.J.: Inhibition of protein synthesis in Neurospora crassa by 8-azaguanine. Indian J. Biochem. 6, 169 (1969)PubMedGoogle Scholar
  42. Mandel, H.G.: Further studies on the modification of nucleic acid synthesis of B. cereus by 8-azaguanine. J. Pharm. Exp. Ther. 133, 141 (1961)Google Scholar
  43. Mandel, H.G., Markham, R.: The effects of 8-azaguanine on the biosynthesis of ribonucleic acid in Bacillus cereus. Biochem. J. 69, 297 (1958)PubMedGoogle Scholar
  44. Mandel, H.G., Alpen, E.L., Winters, W.D., Smith, P.K.: The urinary metabolites of 8-azaguanine in the mouse and the monkey. J. Biol. Chem. 193, 63 (1951)PubMedGoogle Scholar
  45. Mandel, H.G., Carlo, P.E., Smith, P.K.: The incorporation of 8-azaguanine into nucleic acids of tumor-bearing mice. J. Biol. Chem. 206, 181 (1954)PubMedGoogle Scholar
  46. Matthews, R.E.F.: Effect of purines on the multiplication of plant viruses. Nature (London) 169, 500 (1952)CrossRefGoogle Scholar
  47. Matthews, R.E.F.: Effects of some purine analogues on tobacco mosaic virus. J. Gen. Microbiol. 10, 521 (1954)PubMedGoogle Scholar
  48. Mitchel, J.H., Jr., Skipper, H.E., Bennett, L.L., Jr.: Investigation of the nucleic acids of viscera and tumor tissue from animals injected with radioactive 8-azaguanine. Cancer Res. 10, 647 (1950)Google Scholar
  49. Morgan, H.R.: Factors related to the growth of Psittacosis virus (strain 6BC). II. Purines, pyrimidines, and other components related to nucleic acid. J. Exp. Med. 95, 277 (1952)PubMedCrossRefGoogle Scholar
  50. Morrow, J.: Genetic analysis of azaguanine resistance in an established mouse cell line. Genetics 65, 279 (1970)PubMedGoogle Scholar
  51. Nelson, J.A., Carpenter, J.W., Rose, L.M., Adamson, D.J.: Mechanisms of action of 6-thioguanine, 6-mercaptopurine, and 8-azaguanine. Cancer Res. 35, 2872 (1975)PubMedGoogle Scholar
  52. Otaka, E.: Effect of 8-azaguanine on RNA and protein synthesis in B. cereus. Exp. Cell Res. 21, 229 (1960)PubMedCrossRefGoogle Scholar
  53. Otaka, E., Osawa, S., Oota, Y., Ishikama, A., Mitsui, H.: Ribosomal RNA synthesis in growing bacterial cells. Biochim. Biophys. Acta 55, 310 (1962)PubMedCrossRefGoogle Scholar
  54. Peterson, E.R., Murray, M.R.: 8-azaguanine metabolism of human glioblastoma in vitro. Proc. Am. Assoc. Cancer Res. 1, 42 (1953)Google Scholar
  55. Roblin, R.O., Jr., Lampen, J.O., English, J.P., Cole, Q.P., Vaughan, J.R., Jr.: Studies in chemotherapy. VIII Methionine and purine antagonists and their relation to the sulfonamides. J. Am. Chem. Soc. 67, 290 (1945)CrossRefGoogle Scholar
  56. Roy, J.K., Kvam, D.C., Dahl, S.C., Parks, R.E., Jr.: Effect of triphosphate nucleosides of 8-azaguanine 6-thioguanine, and 6-mercaptopurine on amino acid incorporation in vitro into ribosomal protein. J. Biol. Chem. 236, 1158 (1961)PubMedGoogle Scholar
  57. Smith, J.D., Matthews, R.E.F.: The metabolism of 8-azapurines. Biochem. J. 66, 323 (1957)PubMedGoogle Scholar
  58. Stahly, D.P., Srinivasan, V.R., Halvorson, H.O.: Effect of 8-azaguanine on the transition from vegetative growth to presporulation in Bacillus cereus. J. Bacteriol. 91, 1875 (1966)PubMedGoogle Scholar
  59. Szepesi, B., Freedland, R.A.: Differential requirement for de novo RNA synthesis in the starved-refed rat; inhibition of the overshoot by 8-azaguanine after refeeding. J. Nutr. 99, 449 (1969)PubMedGoogle Scholar
  60. Szepesi, B., Berdainer, C.D., Diachenko, S.K., Moser, P.B.: Effect of length of starvation, refeeding, and 8-azaguanine on serum insulin and NADP-linked dehydrogenases of rat liver. J. Nutr. 101, 1147(1971)PubMedGoogle Scholar
  61. Thaker, J.H., Kalle, G.P.: Defective guanine uptake in an 8-azaguanine-resistant mutant of Salmonella typhimurium. J. Bacteriol. 95, 458 (1968)Google Scholar
  62. Wainwright, S.D., Wainwright, L.K.: Regulation of the initiation of hemoglobin synthesis in the blood island cells of chick embryos. III. Qualitative studies of the effects of 8-azaguanine and preparations of transfer RNAs. Can. J. Biochem. 45, 255 (1967)PubMedGoogle Scholar
  63. Ward, D.C., Reich, E.: Relationship between nucleoside conformation and biological activity. Ann. Rep. Med. Chem. p. 272 (1969)Google Scholar
  64. Way, J.L., Parks, R.E., Jr.: Enzymatic synthesis of 5′-phosphate nucleotides of purine analogues. J. Biol. Chem. 231, 467 (1958)PubMedGoogle Scholar
  65. Way, J.L., Dahl, J.L., Parks, R.E., Jr.: Polyphosphate nucleosides of purine analogues. J. Biol. Chem. 234, 1241 (1959)PubMedGoogle Scholar
  66. Webb, T.E.: Polyribosome breakdown in rat liver following administration of 8-azaguanine. Biochim. Biophys. Acta 138, 307 (1967)PubMedGoogle Scholar
  67. Weinstein, I.B., Grunberger, D.: Coding properties of sRNA containing 8-azaguanine. Biochem. Biophys. Res. Commun. 19, 647 (1965)PubMedCrossRefGoogle Scholar
  68. Weiss, J.W., Pitot, H.C.: Inhibition of ribosomal ribonucleic acid by 5-azacytidine and 8-azaguanine in Novikoff hepatoma cells. Arch. Biochem. Biophys. 160, 119 (1974)PubMedCrossRefGoogle Scholar
  69. Youngner, J.S., Ward, E.N., Salk, J.E.: Effect of 5-amino-7-hydroxy-H-V-triazolo(d)pyrimidine on growth and development of the chick embryo. Proc. Soc. Exp. Biol. Med. 75, 157 (1950)PubMedGoogle Scholar
  70. Zimmerman, E.F.: Azaguanine inhibition of protein synthesis, III. Site of action in HeLa cells. Biochim. Biophys. Acta 157, 378 (1968)PubMedGoogle Scholar
  71. Zimmerman, E.F., Greenberg, S.A.: Inhibition of protein synthesis by 8-azaguanine. I. Effects on polyribosomes in HeLa cells. Mol. Pharmacol. 1, 113 (1965)PubMedGoogle Scholar
  72. Zimmerman, E.F., Holler, B.W., Pearson, G.D.: Azaguanine inhibition of protein synthesis. II. Effects of poly[U] in Bacillus cereus. Biochim. Biophys. Acta 134, 402 (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • D. Grunberger
  • G. Grunberger

There are no affiliations available

Personalised recommendations