• N. S. Mizuno
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 2)


Streptonigrin (Fig. 1), a metabolite produced by Streptomyces flocculus, was first isolated by Rao and Cullen (1959–60). Its activity as a broad spectrum antibiotic was summarized in a previous review (Bhuyan, 1967). A method for the biological assay of streptonigrin in biological fluids based on its antibiotic activity against Bacillus subtilis ATCC6633 has been developed by Pittillo and Woolley (1974). Exposure to streptonigrin caused a first-order decline in the viability of bacteria, implying that only one hit per cell is required for lethality (Levine and Borthwick, 1963 a). Streptonigrin is also an excellent inducer of bacteriophage production in lysogenic bacteria while inhibiting the net synthesis of host DNA (Levine and Borthwick, 1963 a; Muschel and Schmoker, 1966). A marked increase in genetic recombination was observed during a mixed bacteriophage infection in presence of the drug (Levine and Borthwick, 1963 b).


Tissue Culture Cell Euglena Gracilis Phenazine Methosulfate Electron Spin Reso Phage Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antipov, I.G., Navitsky, V.V., Goldberg, E.D.: Myeloinhibitory effect of some antitumor antibiotics and its comparative estimation. Antibiotiki 20, 897–902 (1975)PubMedGoogle Scholar
  2. Baumanis, E.A., Elksnite, J.E., Liepinia, V.A.: Effect of antibiotic preparation on the enzymes of serotonin metabolism in the liver of mice. Vopr. Onkol. 19, 36–39 (1973)PubMedGoogle Scholar
  3. Bhuyan, B.K.: Phleomycin, xanthomycin, streptonigrin, nogalomycin and aurantin. In: Antibiotics, mechanism of action. Gottlieb, D., Shaw, P.D. (eds.), Vol. I, pp. 175–176. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  4. Brazhnikova, M.G., Ponomarenko, V.I., Kovsharova, I.N., Kruglyak, E.B., Proshlyakova, V.V.: Study of bruneomycin produced by Act. Albus var. bruneomycini, and its identification with streptonigrin. Antibiotiki 13, 99–102 (1968)PubMedGoogle Scholar
  5. Chaube, S., Kuffer, F.R., Murphy, M.L.: Comparative teratogenic effects of streptonigrin (NSC-45383) and its derivates in the rat. Cancer Chemother. Rep. 53, 23–31 (1969)PubMedGoogle Scholar
  6. Chirigos, M.A., Luber, E., March, R., Pettigrew, H.: Antiviral chemotherapeutic assay with Friend leukemia virus in mice. Cancer Chemother. Rep. 45, 29–33 (1965)PubMedGoogle Scholar
  7. Chirigos, M.A., Pearson, J.W., Papas, T.S., Woods, H.B., Jr., Spahn, G.: Effect of streptonigrin (NSC-45383) and analogs on oncorna replication and DNA polymerase. Cancer Chemother. Rep. 57, 305–309 (1973a)PubMedGoogle Scholar
  8. Chirigos, M.A., Pearson, J., Spahn, G., Rutman, R.: Current studies on oncorna virus therapy. Bibl. Haematol. 39, 1208–1219 (1973b)PubMedGoogle Scholar
  9. Chiu, Y.Y., Lipscomb, W.N.: Molecular and crystal structure of streptonigrin. J. Am. Chem. Soc. 97, 2525–2530 (1975)PubMedCrossRefGoogle Scholar
  10. Cohen, M.M.: Thee specific effects of streptonigrin activity on human chromosomes in culture. Cytogenetics 2, 271–279 (1963)CrossRefGoogle Scholar
  11. Cohen, M.M.L: The interaction of various drugs with human chromosomes. Can. J. Genet. Cytol. 11, 1–24 (1969)PubMedGoogle Scholar
  12. Cohen, M.M., Shaw, M.W., Craig, A.P.: The effects of streptonigrin on cultured human leukocytes. Proc. Natl. Acad. Sci. USA 50, 16–24 (1963)PubMedCrossRefGoogle Scholar
  13. Cone, R., Hasan, S.K., Lowan, J.W., Morgan, A.R.: The mechanism of the degradation of DNA by streptonigrin. Can. J. Biochem. 54, 219–223 (1976)PubMedCrossRefGoogle Scholar
  14. Driscoll, J.S., Hazard, G.F., Jr., Wood, H.B., Jr., Goldin, A.: Structure-antitumor activity relationships among quinone derivatives. Cancer Chemother. Rep. 4, (Pt 2, No 2), 1–362 (1974)Google Scholar
  15. Dudnik. J.V.: Induction of lysogenic Micrococcus lysodiekticus by antibiotics with the ability to affect DNA synthesis. Antibiotiki 2, 112–117 (1965)Google Scholar
  16. Dudnik, J.V., Gause, G.G.: Mechanism of bruneomycin action. Fed. Proc. 25, 1109–1112 (1966)Google Scholar
  17. Dudnik, J.V., Netyksa, E.M., Varik, O.Y.: Increased antibacterial effect of bruneomycin and sibiromycin in cultures with impaired reparation of DNA. Antibiotiki 16, 487–491 (1971)Google Scholar
  18. Dudnik, J.V., Gause, G.G., Karpov, V.L., Kozmyan, L.I., Padron, F.: On interaction in vitro of bruneomycin (streptomycin) with DNA. Antibiotiki 18, 968–973 (1973)PubMedGoogle Scholar
  19. Ebert, P.S., Chirigos, M.A., Ellsworth, P.A.: Differential response of Friend leukemia virus and lactate dehydrogenase virus to chemotherapy and in vitro neutralization. Cancer Res. 28, 363–367 (1968)PubMedGoogle Scholar
  20. Ebringer, L.: Are plastids derived from prokaryotic microorganisms? Action of antibiotics on chloroplasts of Euglena gracilus. J. Gen. Microbiol. 71, 35–52 (1972)PubMedGoogle Scholar
  21. Furusawa, E., Furusawa, S., Lee, J.V.B., Petanavanich, S.: Therapeutic activity of pretazettine, a narcissus alkaloid on Rauscher leukemia ; comparison with tazettine and streptonigrin. Proc. Soc. Exp. Biol. Med. 152, 186–191 (1976)PubMedGoogle Scholar
  22. Gause, G.G., Jr., Mikhailov, V.S.: State of DNA synthesizing system in isolated mitochondria from the mature egg of the loach (Misgurnus fossilis). Biochem. Biophys. Acta 324, 189–198 (1973)PubMedGoogle Scholar
  23. Giraldi, A., Carco, F.P., Giraldi, M., Novati, M.: Antimitotic activity of streptonigrin. G. Ital. Chemioter. 14, 13–19 (1967)PubMedGoogle Scholar
  24. Goldberg, E.D., Salnik, G. A.: Bruneomycin effect on energy metabolism of liver tissue in experiment. Antibiotiki 20, 66–71 (1975)Google Scholar
  25. Gregory, E.M., Fridovich, I.: Oxygen toxicity and the Superoxide dismutase. J. Bacteriol. 114, 1193–1197(1973)PubMedGoogle Scholar
  26. Hassan, H.M., Fridovich, I.: Enzymatic defenses against the toxicity of oxygen and of streptonigrin in E. coli J. Bacteriol. 129, 1574–1583 (1977)PubMedGoogle Scholar
  27. Hays, E.F.: Metabolic inhibitors and viral lymphomagenesis in thymic grafts. J. Natl. Cancer Inst. 53, 561–566 (1974)PubMedGoogle Scholar
  28. Hochstein, P., Laszlo, J., Miller, D.: A unique, dicumarol-sensitive, non-phosphorylating oxidation of DPNH and TPNH catalyzed by streptonigrin. Biochem. Biophys. Res. Commun. 19,289–295 (1965)PubMedCrossRefGoogle Scholar
  29. Ishizu, K., Dearman, H.H., Huang, M.T., White, J.R.: Electron paramagnetic resonance observation on biogenic semiquinone and 5-methyl phenylphenazinum radicals. Biochem. Biophys. Acta 165, 283–285 (1968)PubMedCrossRefGoogle Scholar
  30. Iyer, V.N., Szybalski, W.: Mitomycins and porfiromycin: chemical mechanism of activation and cross-linkeng of DNA. Science 145, 55–58 (1964)PubMedCrossRefGoogle Scholar
  31. Jagiello, G.: Streptonigrin effect on the first meiotic metaphase of the mouse egg. Science 157, 453–454 (1967)PubMedCrossRefGoogle Scholar
  32. Kihlman, B.A.: The production of chromosomal aberrations by streptonigrin in Vicia faba. Mutat. Res. 1, 54–62 (1964)CrossRefGoogle Scholar
  33. Kihlman, B.A., Odmark, G.: Deoxyribonucleic acid synthesis and the production of chromosomal aberrations by streptonigrin, 8-ethoxycaffeine and 1,3,7,9-tetramethyluric acid. Mutat. Res. 2, 494–505 (1965)PubMedCrossRefGoogle Scholar
  34. Kremer, W.B., Laszlo, J.: Biochemical effects of the methyl ester of streptonigrin. Biochem. Pharmacol. 15, 1111–1118(1966)PubMedCrossRefGoogle Scholar
  35. Kremer, W.B., Laszlo, J.: Comparison of biochemical effects of isopropylidine azastreptonigrin (NSC-62709) with streptonigrin (NSC-45383). Cancer Chemother. Rep. 52, 19–24 (1967)Google Scholar
  36. Levine, M., Borthwick, M.: The action of streptonigrin on bacterial DNA metabolism and on induction of phage production in lysogenic bacteria. Virology 21, 568–574 (1963a)PubMedCrossRefGoogle Scholar
  37. Levine, M., Borthwick, M.: The action of streptonigrin on genetic recombination between bacteriophages. Proc. 11th Int. Congr. Genet., Netherlands: The Hague 1963bGoogle Scholar
  38. Lown, J.W., Sim, S.K.: Studies related to antitumor antibiotics. Part VIII Cleavage of DNA by streptonigrin analogues and the relationship to antineoplastic activity. Can. J. Biochem. 54, 446–52 (1976)PubMedCrossRefGoogle Scholar
  39. Mcbride, T.J., Oleson, J.J., Woolf, D.: The activity of streptonigrin against the Rauscher murine leukemia virus in vivo. Cancer Res. 26, 727–732 (1966)PubMedGoogle Scholar
  40. Mikhailov, V.S., Gause, G.G.: The DNA-synthesizing system of isolated mitochondria of unfertilized loach eggs and its artificial activation in vitro by the antibiotic bruneomycin. Mol. Biol. 8, 108–118 (1974)Google Scholar
  41. Mikhailov, V.S., Gause, G.G.: Repair of damage caused by bruneomycin to DNA in isolated mitochondria of mature loach oocytes. Dokl. Akad. Nauk. SSSR 229, 1477–1480 (1976)PubMedGoogle Scholar
  42. Miller, D.S., Laszlo, J., McCarty, K.S., Guild, W.R., Hochstein, P.: Mechanism of action of streptonigrin in leukemic cells. Cancer Res. 27, 632–638 (1967)PubMedGoogle Scholar
  43. Mizuno, N.S.: Effects of streptonigrin on nucleic acid metabolism of tissue culture cells. Biochim. Biophys. Acta 108, 394–395 (1965)PubMedGoogle Scholar
  44. Mizuno, N.S.: Distribution of tritiated methyl ester of streptonigrin in mice bearing sarcoma 180. Biochem. Pharmacol. 15, 394–403 (1966)PubMedCrossRefGoogle Scholar
  45. Mizuno, N.S.: Comparative effects of streptonigrin derivatives on tissue culture cells. Biochem. Pharmacol. 16, 933–940 (1967)PubMedCrossRefGoogle Scholar
  46. Mizuno, N.S., Gilboe, D.P.: Binding of streptonigrin to DNA. Biochim. Biophys. Acta 224, 319–327 (1970)PubMedGoogle Scholar
  47. Mizuno, N.S., Humphrey, E.W.: Metabolism of tritiated methyl ester of streptonigrin (NSC-45384) in humans with cancer. Cancer Chemother. Rep. 41, 23–26 (1964)PubMedGoogle Scholar
  48. Morgan, A.R., Cone, R.L., Elgert, T.M.: The mechanism of DNA strand breakage by vitamin C and Superoxide and the protective roles of catalase and Superoxide. Nucleic Acid Res. 3, 1139–1149(1976)PubMedGoogle Scholar
  49. Muschel, L.H., Schmoker, K.: Activity of mitomycin C, other antibiotics, and serum against lysogenic bacteria. J. Bacteriol. 92, 967–971 (1966)PubMedGoogle Scholar
  50. Nasjleti, C.E., Spencer, H.H.: Chromosome polyploidization in human leukocyte culture treated with streptonigrin and cyclophosphamide. Cancer 20, 31–35 (1967)PubMedCrossRefGoogle Scholar
  51. Oberdisse, E., Neubert, D.: Influence of several antibiotics, which can form complexes with DNA, on nucleic acid synthesis of warm-blooded animal cells in vivo. Nauyn-Schmiedebergs’ Arch. Pharmakol. Exp. Pathol. 257, 47–48 (1967)CrossRefGoogle Scholar
  52. O’Connor, T.E., Schoop-Stansly, P., Sethi, V.S., Hadidi, A., Okano, P.: Antibiotic control of infection of human or mouse cells with oncorna virus. Collect. Pap. Annu. Symp. Fundam. Cancer Res. 27, 319 (1975)Google Scholar
  53. Oleson, J.J., Calderella, L.A., Mjos, K.J., Peith, A.R., Thie, R.S., Toplin, I.: The effects of streptonigrin on experimental tumors. Antibiot. Chemother. 11, 158–164 (1961)PubMedGoogle Scholar
  54. Padron, E., Karpov, V.L., Gause, G.G., Dudnik, J.V.: Distribution of H3-bruneomycin in tumor cell. Antibiotiki 19, 387–389 (1974)PubMedGoogle Scholar
  55. Pittillo, R.F., Woolley, C.: Biological assay of streptonigrin (NSC-45383) in body fluids and tissues of mice. Antimicrob. Agents Chemother. 5, 82–85 (1974)PubMedCrossRefGoogle Scholar
  56. Price, P.J., Suk, Wa.A., Spah, G.J., Chirigos, M.A., Lane, J.A., Huebner, R.J.: Streptonigrin inhibition of 3-methylcholanthrene transformation in vitro. Proc. Soc. Exp. Biol. Med. 145, 1197–1200(1974)PubMedGoogle Scholar
  57. Puck, T.T.: Phasing, mitotic delay and chromosomal aberration in mammalian cells. Science 144, 565–566 (1964)PubMedCrossRefGoogle Scholar
  58. Pulich, W.M., Jr.: Resistance to high oxygen tension, streptonigrin and ultraviolet irradiation in the green alga Chlorella Sorokiniana strain ors. J. Cell Biol. 62, 904–907 (1974)PubMedCrossRefGoogle Scholar
  59. Radding, C. M.: Incorporation of 3H-thymidine by K12 (λ) induced by streptonigrin. In: Genetics today. Geerts, S.J. (ed.) p.22. Oxford: Pergamon Press 1963Google Scholar
  60. Rao, K.V.: Quinone natural products; streptonigrin (NSC-45383) and lapachol (NSC-11905) structure-activity relationship. Cancer Chemother. Rep. 4 (Pt. 2, No 4), 11–17 (1974)Google Scholar
  61. Rao, K.V., Cullen, W.P.: Streptonigrin, an antitumor substance, I. Isolation and characterization. Antibiot. Ann., 950–953 (1959–60)Google Scholar
  62. Rao, K.V., Biemann, K., Woodward, R.B.: The structure of streptonigrin. J. Am. Chem. Soc. 85, 2532–2533 (1963)CrossRefGoogle Scholar
  63. Reilly, H.C., Sigiura, K.: An antitumor spectrum of streptonigrin. Antibiot. Chemother. 11, 174–177 (1961)PubMedGoogle Scholar
  64. Shorin, V.A., Brazhanov, V.S.: Possibility of utilizing leukemia L1210 as a first screening model in the primary selection of new antitumor antibiotics. Antibiotiki 19, 679–684 (1974)PubMedGoogle Scholar
  65. Soukup, S., Takacs, E., Warkany, S.: Chromosome changes in embryos treated with various teratogens. J. Embryol. Exp. Morphol. 18, 215–226 (1967)PubMedGoogle Scholar
  66. Szybalski, W.: Structural modifications of DNA; crosslinking, circularization and single-strand interruptions. Abh. Dtsch. Akad. Berlin 4, 1–19 (1964)Google Scholar
  67. Teller, M.N., Wagshul, S. F., Woolley, G. S.: Transplantable human tumors in experimental chemotherapy: effects of streptonigrin on HS #1 and HEP3 in the rat. Antibiot. Chemother. 11, 165–173 (1961)PubMedGoogle Scholar
  68. Warkany, J., Takacs, E.: Changes of endocrine glands produced by teratogenic methods. The pituitary gland. Arch. Pathol. 85, 101–113 (1968)PubMedGoogle Scholar
  69. White, H.L., White, J.R.: Interaction of streptonigrin with DNA in vitro. Biochim. Biophys. Acta 123, 648–651 (1966)PubMedGoogle Scholar
  70. White, H.L., White, J.R.: Lethal action and metabolic effects of streptonigrin in E. coli. Mol. Pharmacol. 4, 549–565 (1968)PubMedGoogle Scholar
  71. White, J.R., Dearman, H.H.: Generation of free radicals from phenazine methosulfate, streptonigrin, and rubiflavin in bacterial suspensions. Proc. Natl. Acad. Sci. USA 54, 887–891 (1965)PubMedCrossRefGoogle Scholar
  72. Woods, W.A., Massicot, J.G., Webb, J.H., Chirigos, M.A.: Inhibitory effect of streptonigrin on a murine sarcoma virus-induced tumor cell line (MSC) and selection of drug resistant clones. In Vitro 9, 24–30 (1973)PubMedCrossRefGoogle Scholar
  73. Young, C.W., Hodas, S.: Acute effects of cytotoxic compounds on incorporation of precursors into DNA, RNA and protein of HeLa monolayers. Biochem. Pharmacol. 14, 205–214 (1965)PubMedCrossRefGoogle Scholar
  74. Zee-Cheng, K.Y., Cheng, C.C.: Common receptor complement feature among some antileukemic compounds. J. Pharm. Sci. 59, 1630–1634 (1970)PubMedCrossRefGoogle Scholar
  75. Zetterberg, G., Kihlman, B.A.: Production of mutation by streptonigrin in the ascomycete Ophiostoma multiannulatum. Mutat. Res. 2, 470–71 (1965)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • N. S. Mizuno

There are no affiliations available

Personalised recommendations