• W. H. Prusoff
  • M. S. Chen
  • P. H. Fischer
  • T. S. Lin
  • G. T. Shiau
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 2)


Iodinated pyrimidines were first synthesized by Johnson and Johns (1905–1906), and a systematic study of the biologic activities of various purine and pyrimidine base analogs was initiated by Hitchings et al. (1945) and extended by Thompson et al. (1949). The clinical potential of base analogs, whether halogenated or not, has been well recognized in chemotherapy. Furthermore, such compounds have proven to be powerful tools for elucidation of many intricate biochemical events of importance to molecular biology. Halogenated pyrimidine bases (ClUra, BrUra, IUra) are readily incorporated into the DNA of various microorganisms, however they are poorly utilized for the biosynthesis of DNA in mammalian systems in contrast to the corresponding deoxyribonucleosides (CldUrd, BrdUrd, IdUrd).


Herpes Simplex Antiviral Activity Herpes Simplex Virus Type Herpes Zoster Vaccinia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aamodt, L., Goz, B.: An immunological study of an enzyme made by phage containing 5-iodo-2′-deoxyuridine-substituted deoxyribonucleic acid. Biochem. Pharmacol. 19, 2400 (1970)PubMedCrossRefGoogle Scholar
  2. Aaronson, S.A., Todaro, G.T., Scolnick, E.M.: Induction of murine C-type viruses from clonal lines of virus-free BALB/3T3 cells. Science 174, 157 (1971)PubMedCrossRefGoogle Scholar
  3. Albert, D.A., Percy, D.H., Puliafito, C.A., Fritsch, E., Pavan-Langston, D., Lin, T.S., Ward, D.C., Prusoff, W.H.: AIU: An antiherpetic drug with low neonatal toxicity in mice Adv. Ophthalmol. 38, in pressGoogle Scholar
  4. Albert, D.M., Lahav, M., Bhatt, P., Reid, T.W., Ward, R.E., Cykiert, R.C., Lin, T.S., Ward, D.C., Prusoff, W.H.: Successful therapy of herpes hominis keratitis in rabbits by 5-iodo-5′-amino-2′, 5′-dideoxyuridine (AIU). J. Invest. Opthalmol. 15, 470 (1976)Google Scholar
  5. Bagshaw, M.A., Doggett, R.L.S.: A clinical study of chemical radiosensitization. Front. Radiat. Ther. Oncol. 4, 164 (1969)Google Scholar
  6. Bagshaw, M.A., Doggett, R.L.S., Smith, K.C., Kaplan, H.S., Nelson, T.S.: Intra-arterial 5-bromode-oxyuridine and x-ray therapy. Am. J. Roentgenol. Radium. Ther. Nucl. Med. 99, 886 (1976)Google Scholar
  7. Bakhle, Y.S., Creasey, W.A., Sartorelli, A.C., Prusoff, W.H.: Some biological and biochemical properties of 5-iodocytosine. Biochem. Pharmacol. 13, 1249 (1964a)PubMedCrossRefGoogle Scholar
  8. Bakhle, Y.S., Prusoff, W.H., McCrea, J.F.: Precaution in the use of iodine-125 as a radioactive tracer. Science 143, 799 (1964 b)PubMedCrossRefGoogle Scholar
  9. Baugnet-Maniew, L., Goutier, R.: Mechanisms responsible for the low incorporation into DNA of the thymidine analogue, 5-iodo-2′-deoxyuridine. Biochem. Pharmacol. 17, 1017 (1968)CrossRefGoogle Scholar
  10. Berry, R.J., Andrews, J.R.: Modification of the radiation effect on the reproductive capacity of tumor cells in vivo with pharmacological agents. Radiat. Res. 16, 82–88 (1962 a)PubMedCrossRefGoogle Scholar
  11. Berry, R.J., Andrews, J.R.: Modification of radiation effect on mammalian tumour cells by pharmacological agents. Nature (London) 196, 185–186 (1962b)CrossRefGoogle Scholar
  12. Bick, M.D.: Misincorporation of GTP during transcription of poly dAT-dAT and poly dABU-dABU. Nucleic Acid Res. 2, 1513 (1975)PubMedCrossRefGoogle Scholar
  13. Bick, M.D.: Bromodeoxyuridine inhibition of Friend leukemia cell induction. Biochim. Biophys. Acta 476, 279 (1977)PubMedGoogle Scholar
  14. Bick, M.D., Soffer, M.: Altered glucose-6-phosphate dehydrogenase in bromodeoxyuridine-substituted cells. Nature (London) 260, 788 (1976)CrossRefGoogle Scholar
  15. Birnie, G.D., Kroeger, H., Heidelberger, C.: Studies of fluorinated pyrimidines. XVIII. The degradation of 5-fluoro-2′-deoxyuridine and related compounds by nucleoside phosphorylase. Biochemistry 2, 566 (1963)PubMedCrossRefGoogle Scholar
  16. Bloch, A.: The design of biologically active nucleosides. In: Drug design. Ariens, E.J., (ed.), Vol. IV, p. 286. New York: Academic Press 1973Google Scholar
  17. Booth, B.A., Sartorelli, A.C.: Growth inhibition of a spectrum of transplanted mouse tumors by combinations of inhibitors of nucleic acid biosynthesis and alkylating agents. Cancer Res. 23, 1762(1963)PubMedGoogle Scholar
  18. Boston Interhospital Virus Study Group and the NIAID-sponsored Cooperative Antiviral Clinical Study. N. Engl. J. Med. 292, 599 (1975)Google Scholar
  19. Breeden, C.J., Hall, T.C., Tyler, H.R.: Herpes simplex encephalitis treated with systemic 5-iodo-2′-deoxyuridine. Ann. Intern. Med. 65, 1050 (1966)PubMedGoogle Scholar
  20. Brockman, R.W., Anderson, E.P.: Pyrimidine analogues. In: Metabolic inhibitors. Hochster, R.M., Quastel, J.H., (eds.), Vol. I, p. 239. New York: Academic Press 1963Google Scholar
  21. Brownstone, A.D.: A simple preparation of 5-iodo-2′-deoxyuridine labelled with iodine-131 using iodine monochloride. Nature (London) 199, 1285 (1963)CrossRefGoogle Scholar
  22. Buettner, W., Werchau, H.: Incorporation of 5-iodo-2′-deoxyuridine (IUdR) into SV40 DNA. Virology 52, 553 (1973)PubMedCrossRefGoogle Scholar
  23. Bui, N.M., Gillett, R., Dumont, P.: An improved synthesis of 5-iodo-2′-deoxyuridine-I131 and 5-ioduracil-I131. Int. J. Appl. Radiat. Isot. 16, 337 (1965)PubMedCrossRefGoogle Scholar
  24. Bulmer, D., Stocco, D., Morrow, J.: Bromodeoxyuridine induced variations in the level of alkaline phosphatase in several human heteroploid cell lines. J. Cell. Physiol. 87, 357 (1976)PubMedCrossRefGoogle Scholar
  25. Burchenal, J.H., Oettgen, H.F., Reppert, J.A., Coley, V.: Studies on the synergism of fluorinated pyrimidines and certain pyrimidine and purine derivatives against transplanted mouse leukemia. Cancer Chemother. Rep. 6, 1 (1960)PubMedGoogle Scholar
  26. Buthala, D.A.: Cell culture studies on antiviral agents. I. Action of cytosine arabinoside and some comparisons with 5-iodo-2-deoxyuridine. Proc. Soc. Exp. Biol. Med. 115, 69 (1964)PubMedGoogle Scholar
  27. Calabresi, P.: Regional protection in cancer chemotherapy. I. Infusions of thymidine into external carotid artery of patients receiving systemic 5-iodo-2′-deoxyuridine. J. Clin. Invest. 41, 1484 (1962)PubMedCrossRefGoogle Scholar
  28. Calabresi, P.: Current status of clinical investigations with 6-azauridine, 5-iodo-2′-deoxyuridine, and related compounds. Cancer Res. 23, 1260 (1963)PubMedGoogle Scholar
  29. Calabresi, P., Cardoso, S.C., Finch, S.C., Kligerman, M.M., von Essen, C.F., Chu, M.Y., Welch, A.D.: Initial clinical studies with 5-iodo-2′-deoxyuridine. Cancer Res. 21, 550 (1961)PubMedGoogle Scholar
  30. Calabresi, P., Creasey, W.A., Prusoff, W.H., Welch, A.D.: Clinical and pharmacological studies with 5-iodo-2′-deoxyuridine. Cancer Res. 23, 583 (1963)PubMedGoogle Scholar
  31. Calothy, G., Hirai, K., Defendi, V.: 5-Bromodeoxyuridine incorporation into simian virus 40 deoxyribonucleic acid. Effects on simian virus 40 replication in monkey cells. Virology 55, 329 (1973)PubMedCrossRefGoogle Scholar
  32. Camerman, N., Trotter, J.: 5-iodo-2′-deoxyuridine: relation of structure to its antiviral activity. Science 144, 1348 (1964)PubMedCrossRefGoogle Scholar
  33. Chang, P.K., Welch, A.D.: Preparation of 5-iodo-2′-deoxyuridine. Biochem. Pharmacol. 8, 327 (1961)PubMedCrossRefGoogle Scholar
  34. Chang, P.K., Welch, A.D.: Iodination of 2′-deoxycytidine and related substances. J. Med. Chem. 6, 428 (1963)PubMedCrossRefGoogle Scholar
  35. Chaube, S., Murphy, M.L.: Teratogenic effects of 5-chlorodeoxyuridine on the rat fetus; protection by physiological pyrimidines. Cancer Res. 24, 1986 (1964)PubMedGoogle Scholar
  36. Chen, M.S., Prusoff, W.H.: Kinetic, photochemical studies, and alteration of ultraviolet sensitivity of E. coli thymidine kinase by halogenated allosteric regulators and substrate analogs. Biochemistry 16, 3310 (1977)PubMedCrossRefGoogle Scholar
  37. Chen, M.S., Chang, P.K., Prusoff, W.H.: Photochemical studies and ultraviolet sensitization of E. coli thymidylate kinase by various halogenated substrate analogs. J. Biol. Chem. 251, 6555 (1976 a)PubMedGoogle Scholar
  38. Chen, M.S., Ward, D.C., Prusoff, W.H.: Specific herpes simplex virus induced incorporation of 5-iodo-5′-amino-2′-5′-dideoxyuridine into deoxyribonucleic acid. J. Biol. Chem. 251, 4833 (1976 b)PubMedGoogle Scholar
  39. Cheng, Y.-C., Goz, B., Neenan, J.P., Ward, D.C., Prusoff, W.H.: The selective inhibition of herpes simplex virus by 5′-amino-2′,5′-dideoxy-5-iodouridine. J. Virol. 15, 1284 (1975)PubMedGoogle Scholar
  40. Cheong, L., Rich, M.A., Eidinoff, M.L.: Introduction of the 5-halogenated uracil moiety into deoxyribonucleic acid of mammalian cells in culture. J. Biol. Chem. 235, 1441 (1960)PubMedGoogle Scholar
  41. Cleaver, J.E.: Thymidine metabolism and cell kinetics, Amsterdam: North-Holland 1957Google Scholar
  42. Coggin, J.H., Larson, V.M., Hilleman, M.R.: Prevention of SV40 virus tumorigenesis by irradiated, disrupted and iododeoxyuridine trated tumor cell antigens. Proc. Soc. Exp. Biol. Med. 124, 774 (1967)PubMedGoogle Scholar
  43. Commerford, S.L., Gitlin, D., Hughes, W.L.: Inhibitory effect of small doses of x-radiation on incorporation of iododeoxyuridine (IDU) into DNA. Fed. Proc. 19, 359 (1960)Google Scholar
  44. Cooper, G.M., Greer, S.: Irreversible inhibition of dehalogenation of 5-iodouracil by 5-diazouracil and reversible inhibition by 5-cyanouracil. Cancer Res. 30, 2937 (1970)PubMedGoogle Scholar
  45. Cramer, J.W., Morris, N.R.: Absence of DNA synthesis in one-half of a population of mammalian tumor cells inhibited in culture by 5-iodo-2′-deoxyuridine. Mol. Pharmacol. 2, 363 (1966)Google Scholar
  46. Cramer, J.W., Prusoff, W.H., Welch, A.D.: 5-Bromo-2′-deoxycytidine (BCDR) II. Studies with murine neoplastic cells in culture and in vitro. Biochem. Pharmacol. 8, 331 (1961)PubMedCrossRefGoogle Scholar
  47. Cramer, J.W., Prusoff, W.H., Welch, A.D., Sartorelli, A.C., Delamore, I.W., von Essen, C.F., Chang, P.K.: Studies on the biochemical pharmacology of 5-iodo-2′-deoxycytidine in vitro and in vivo. Biochem. Pharmacol. 11, 761 (1962)PubMedCrossRefGoogle Scholar
  48. Cysyk, R., Prusoff, W.H.: Alteration of ultraviolet sensitivity of thymidine kinase by allosteric regulators, normal substrates, and a photoaffinity label, 5-iodo-2′-deoxyuridine, a metabolic analog of thymidine. J. Biol. Chem. 247, 2522 (1972)PubMedGoogle Scholar
  49. Davidson, R.L., Bick, M.D.: Bromodeoxyuridine dependence — a new mutation in mammalian cells. Proc. Natl. Acad. Sci. 70, 138 (1973)PubMedCrossRefGoogle Scholar
  50. Dawber, R.: Idoxuridine in herpes zoster: further evaluation of intermittent topical therapy. Br. Med. J. 2, 526 (1974)PubMedCrossRefGoogle Scholar
  51. Dethlefsen, L.A.: Tumor radioactivity from 125I or 3H-labeled IUdR. Cancer Res. 29, 1717 (1969)PubMedGoogle Scholar
  52. Djordjevic, B., Szybalski, W.: Genetics of human cell lines. III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J. Exp. Med. 112, 509 (1960)PubMedCrossRefGoogle Scholar
  53. Dobersen, M.J., Jerkofsky, H., Greer, S.: Enzymatic studies on the basis for selective inhibition of herpes simplex virus and varicella-zoster virus by 5-bromo-deoxycytidine. Fed. Proc. 35, 1689 (1976)Google Scholar
  54. Dubbs, D.R., Kit, S., De Torres, R.A., Anken, M.: Virogenic properties of bromodeoxyuridine-sensitive and bromodeoxyuridine-resistant simian virus 40-transformed mouse kidney cells. J. Virol. 1, 968 (1967)PubMedGoogle Scholar
  55. Dunn, D.B., Smith, J.D.: Incorporation of halogenated pyrimidines into the deoxyribonucleic acids of Bacterium coli and its bacteriophages. Nature (London) 174, 305 (1954)CrossRefGoogle Scholar
  56. Dunn, D.B., Smith, J.D.: Effects of 5-halogenated uracils on the growth of E. coli and their incorporation into deoxyribonucleic acids. Biochem. J. 67, 494 (1957)PubMedGoogle Scholar
  57. Easterbrook, K.B., Davern, C.I.: The effect of 5-bromodeoxyuridine on the multiplication of vaccinia virus. Virology 19, 509 (1963)CrossRefGoogle Scholar
  58. Eidinoff, M.L., Rich, M.A.: Incorporation of unnatural pyrimidine bases into deoxyribonucleic acid of mammalian cells. Science 129, 1550 (1959)PubMedCrossRefGoogle Scholar
  59. Erikson, R.L., Szybalski, W.: Molecular radiobiology of human cell lines. I. Comparative sensitivity to x-rays and ultraviolet light of cells containing halogen-substituted DNA. Biochem. Biophys. Res. Commun 4, 258 (1961)PubMedCrossRefGoogle Scholar
  60. Ey, R.C., Hughes, W.F., Holmes, A.W.: Clinical and laboratory evaluation of idoxuridine (IDU) therapy in herpes simplex keratitis. Arch. Ophthalmol. 71, 325 (1964)PubMedCrossRefGoogle Scholar
  61. Fischer, P.H., Chen, M.S., Prusoff, W.H.: A relationship between the antiviral activity of 5-iodo-5′-amino-2′,5′-dideoxyuridine (AldUrd) and its incorporation into herpes simplex virus DNA. Pharmacologist 19, 209 (1977)Google Scholar
  62. Fox, B.W., Prusoff, W.H.: The comparative uptake of I125 labeled 5-iodo-2′-deoxyuridne and thymidine-H3 into tissues of mice bearing hepatoma-129. Cancer Res. 25, 234 (1965)PubMedGoogle Scholar
  63. Friedkin, M., Roberts, D.: The enzymatic synthesis of nucleosides. II. Thymidine and related pyrimidine nucleosides. J. Biol. Chem. 207, 257 (1954)PubMedGoogle Scholar
  64. Fujiwara, Y., Oki, T., Heidelberger, C.: Fluorinated pyrimidines. XXXVII. Effect of 5-trifluoro-methyl-2′-deoxyuridine on the synthesis of deoxyribonucleic acid of mammalian cells in culture. Mol. Pharmacol. 6, 273 (1970)PubMedGoogle Scholar
  65. Geeraets, W.J., Wong, G., Guerry, D., III: The effect of idoxuridine (IDU) on corneal stromal cells in tissue culture. Med. College Virginia Quart., p. 30 (1965)Google Scholar
  66. Gilbert, E.F., Pitot, H.C., Bruyere, H.J., Jr., Cheung, A.L.: Abnormal proteins in drosophila melanogaster subsequent to 5-bromodeoxyuridine administration. Comp. Biochem. Physiol. 47B, 229 (1974)Google Scholar
  67. Goldin, A., Venditti, J.M., Kline, I., Mantel, N.: Evaluation of antileukemic agents employing advanced leukemia L1210 in mice IV. Cancer Res. 21, CS 27 (1961)Google Scholar
  68. Gollin, F.F., Ansfield, F.J., Vermund, H.: Behandlung inoperabler Bronchialkarzinome durch Kombination von Chemotherapie und Bestrahlung. Dtsch. Med. Wochenschr. 45, 2140 (1964)CrossRefGoogle Scholar
  69. Gordon, D.M., Karnofsky, D.A.: Chemotherapy of herpes simplex keratitis. Am. J. Ophthal. 55, 229 (1963)PubMedGoogle Scholar
  70. Gordon, J.S., Bell, G.I., Martinson, H.C., Rutter, W.J.: Selective interaction of 5′-bromodeoxyuridine substituted DNA with different chromosomal proteins. Biochemistry 15, 4778 (1976)PubMedCrossRefGoogle Scholar
  71. Goz, B.: The induction of alkaline phosphatase activity in HeLa cells by 5-iodo-2′-deoxyuridine. Cancer Res. 34, 2393 (1974)PubMedGoogle Scholar
  72. Goz, B., Prusoff, W.H.: The ability of phage containing 5-iodo-2′-deoxyuridine-substituted DNA to induce enzymes. J. Biol. Chem. 243, 4750 (1968)PubMedGoogle Scholar
  73. Goz, B., Prusoff, W.H.: The relation of antiviral activity of IUdR to gene function in phage. Ann. N.Y. Acad. Sci. 173, 379 (1970a)CrossRefGoogle Scholar
  74. Goz, B., Prusoff, W.H.: Pharmacology of viruses. Annu. Rev. Pharmacol. 10, 143 (1970b)PubMedCrossRefGoogle Scholar
  75. Goz, B., Walker, K.P.: The incorporation of 5-iodo-2′-deoxyuridine. into the DNA of HeLa cells and the induction of alkaline phosphatase activity. Cancer Res. 36, 4480 (1976)PubMedGoogle Scholar
  76. Grady, L.J., Campbell, W.P.: The distribution of 5-bromodeoxyuridine in the DNA of polyomatransformed mouse cells and some apparent effects on transcription. Exp. Cell Res. 87, 127 (1974)PubMedCrossRefGoogle Scholar
  77. Greer, S.: Studies on ultraviolet irradiation of Escherichia coli containing 5-bromouracil in its DNA. J. Gen. Microbiol. 22, 618 (1960)PubMedGoogle Scholar
  78. Greer, S., Zamenhof, S.: Effect of 5-bromouracil in deoxyribonucleic acid of E. coli on sensitivity to ultraviolet radiation. Abstr. papers 131st Meet. Am. Chem. Soc. 3C (1957)Google Scholar
  79. Gunther, H.L., Prusoff, W.H.: Studies on the mechanism of resistance to pyrimidines in Streptococcus faecalis. I. An unusual effect of 5-iodouracil and 5-iodo-2′-deoxyuridine. J. Biol. Chem. 238, 1091 (1963)PubMedGoogle Scholar
  80. Gurr, J.A., Becker, J.E., Potter, V.R.: The diverse effects of 5′-bromodeoxyuridine on enzyme activities in cultured H35 hepatoma cells. J. Cell Physiol. 81, 271 (1977)CrossRefGoogle Scholar
  81. Gurwith, M.J., Harman, C.E., Merigan, T.C.: Approach to diagnosis and treatment of herpes simplex encephalitis. Calif. Med. 115, 63 (1971)PubMedGoogle Scholar
  82. Hakala, M.T.: Tissue culture studies on mechanisms of action of some purine and thymine analogs. Fed. Proc. 17, 236 (1958)Google Scholar
  83. Hakala, M.T.: Mode of action of 5-bromodeoxyuridine on mammalian cells in culture. J. Biol. Chem. 234, 3072 (1959).PubMedGoogle Scholar
  84. Hampton, E.G., Eidinoff, M.L.: Administration of 5-iododeoxyuridine-I131 in the mouse and rat. Cancer Res. 21, 345 (1961)PubMedGoogle Scholar
  85. Handschumacher, R.E., Welch, A.D.: Agents which influence nucleic acid metabolism. In: The nucleic acids. Chargaff, E., Davidson, J.N. (eds.), Vol. III, p. 453. New York: Academic Press 1960Google Scholar
  86. Hanna, C.: Effect of several analogs of idoxuridine on the uptake of tritium labeled thymidine in the rabbit cornea infected with herpes simplex. Exp. Eye Res. 5, 164 (1966)PubMedCrossRefGoogle Scholar
  87. Heck, H.D’A., McReynolds, J.H., Anbar, M.: A stable isotope method for measurement of thymidine incorporation into DNA. Cell Tissue Kinet. 10, 111 (1977)PubMedGoogle Scholar
  88. Heidelberger, C., Griesbach, C., Ghobar, A.: The potentiation by 5-fluoro-2′-deoxyuridine. (IDUR) of the tumor-inhibitory activity of 5-fluoro-2′-deoxyuridine. (FUDR). Cancer Chemother. Rep. 6, 37 (1960)PubMedGoogle Scholar
  89. Herrmann, E.C., Jr.: Plaque inhibition test for detection of specific inhibitors of DNA containing viruses. Proc. Soc. Exp. Biol. N.Y. 107, 142 (1961)Google Scholar
  90. Hill, B.T., Baserga, R.: Effect of 5-bromodeoxyuridine on the transcriptional properties of the genome W1-38 human diploid fibroblasts. Chem. Biol. Interact. 10, 363 (1975)PubMedCrossRefGoogle Scholar
  91. Hirt, B.: Evidence for semiconservative replication of circular polyoma DNA. Proc. Natl. Acad. Sci. USA 55, 997 (1966)PubMedCrossRefGoogle Scholar
  92. Hitchings, G.H., Elion, G.B.: Purine analogues. In:Metabolic inhibitors. Hochstern, R.M., Quastel, J.H., (eds.), Vol. I, p. 215. New York: Academic Press 1963Google Scholar
  93. Hitchings, G.H., Falco, E.A., Sherwood, M.B.: The effects of pyrimidines on the growth of lactobacillus casei. Science 102, 251 (1945)PubMedCrossRefGoogle Scholar
  94. Hoshino, T., Sano, K.: Radiosensitization of malignant brain tumors with bromouridine (thymidine analog). Acta Radiol. 8, 15 (1969)Google Scholar
  95. Hsu, T.C., Somers, C.E.: Effect of 5-bromodeoxyuridine on mammalian chromosomes. Proc. Natl. Acad. Sci. 47, 396 (1961)PubMedCrossRefGoogle Scholar
  96. Hsu, T.C., Somers, C.E.: Properties of L cells resistant to 5-bromodeoxyuridine, Exp. Cell. Res. 26, 404 (1962)CrossRefGoogle Scholar
  97. Hsu, T.C., Billen, D., Levan, A.: Mammalian chromosomes in vitro. XV Patterns of transformation. J. Natl. Cancer Inst. 27, 515 (1961)PubMedGoogle Scholar
  98. Hughes, W.L., Commerford, S.L., Gitlin, D., Krueger, R.C., Schultze, B., Shah, V., Reilly, P.: Deoxyribonucleic acid metabolism in vivo. I. Cell proliferation and death as measured by incorporation and elimination of iododeoxyuridine. Fed. Proc. 23, 640 (1964)PubMedGoogle Scholar
  99. Humphrey, R.M., Hsu, T.C: Further studies on biological properties of mammalian cell lines resistant to 5-bromodeoxyuridne. Tex. Rep. Biol. Med. 23, 321 (1965)PubMedGoogle Scholar
  100. Itoi, M., Gefter, J.W., Kaneko, N., Ishii, Y., Ramer, R.M., Gasset, A.R.: Teratogenicities of ophthalmic drugs. I. Antiviral ophthalmic drugs. Arch. Ophthalmol. 93, 46 (1975)PubMedCrossRefGoogle Scholar
  101. Izutsu, I., Biesele, J.J.: Effects on HeLa cell division of physiologic deoxyribonucleosides and deoxyribonucleotides. Cancer Res. 26, 910 (1966)PubMedGoogle Scholar
  102. Jaffee, J.J., Prusoff, W.H.: The effect of 5-iododeoxyuridine upon the growth of some transplantable rodent tumors. Cacer Res. 20, 1383 (1960)Google Scholar
  103. Johnson, T.B., Johns, C.O.: Researches on pyrimidines; some 5-iodo pyrimidine derivatives; 5-iodo-cytosine. J. Biol. Chem. 1, 305 (1905–06)Google Scholar
  104. Jones, P.A., Benedict, W.F., Baker, M.S., Mondai, S., Rapp, U., Heidelberger, C: Oncogenic transformation of C3H/10T 1/2 clone 8 mouse embryo cells by halogenated pyrimidine nucleosides. Cancer Res. 36, 101 (1976)PubMedGoogle Scholar
  105. Jones, T.C., Dove, W.F.: Photosensitization of transcription by bromodeoxyuridine substitution. J. Mol. Biol 64, 409 (1972)PubMedCrossRefGoogle Scholar
  106. Juel-Jensen, B.E.: Herpes simplex and zoster. Br. Med. J. 1, 406 (1973)PubMedCrossRefGoogle Scholar
  107. Juel-Jensen, B.E.: Virus diseases. Practitioner 213, 508 (1974)PubMedGoogle Scholar
  108. Juel-Jensen, B.E., MacCallum, F.O.: Idoxuridine in herpes zoster. Br. Med. J. 2, 41 (1974)CrossRefGoogle Scholar
  109. Juel-Jensen, B.E., MacCallum, F.O., MacKenzie, A.M.R., Pike, M.C.: Treatment of zoster with idoxuridine in dimethyl sulphoxide. Results of two double-blind controlled trials. Br. Med. J. 4, 776(1970)PubMedCrossRefGoogle Scholar
  110. Kajiwara, K., Mueller, G.C.: Molecular events in the reproduction of animal cells. III. Fractional synthesis of DNA with BUdR and its effect on cloning efficiency. Biochim. Biophys. Acta 91, 486 (1964)PubMedGoogle Scholar
  111. Kan, J., Prusoff, W.H.: Effect of iododeoxyuridine (IdUrd) on adenovirus 2. Fed. Proc. 35, 624 (1976)Google Scholar
  112. Kaplan, A.S., Ben-Porat, T.: Differential incorporation of iododeoxyuridine into DNA of pseudorabies virus-infected and noninfected cells. Virology 31, 734 (1967)PubMedCrossRefGoogle Scholar
  113. Kaplan, A.S., Ben-Porat, T., Kamiya, T.: Incorporation of 5-bromodeoxyuridine and 5-iododeoxyuridine into viral DNA and its effect on the infective process. Ann. N.Y. Acad. Sci. 130, 226 (1965)PubMedCrossRefGoogle Scholar
  114. Kaplan, H.S.: Radiosensitization by the halogenated pyrimidine analogues: Laboratory and clinical investigations. In: Radiation protection and sensitization. Moroson, H.L., Quintiliani, M. (eds.), p. 35. New York: Barnes and Noble 1970Google Scholar
  115. Kaufman, E.R., Davidson, R.L.: Bromodeoxyuridine mutagenesis in mammalian cells: Mutagenesis is independent of the amount of bromouracil in DNA. Proc. Natl, Acad. Sci. 75, 4982 (1978)CrossRefGoogle Scholar
  116. Kaufman, H.E.: Clinical cure of herpes simplex keratitis by 5-iodo-2′-deoxyuridine. Proc. Soc. exp. Biol. (N.Y.). 109, 251 (1962)Google Scholar
  117. Kaufman, H.E., Martola, E., Dohlman, C.: Use of 5-iodo-2′-deoxyuridine. (IDU) in treatment of herpes simplex keratitis. Arch. Opthalmol. 68, 235 (1962a)CrossRefGoogle Scholar
  118. Kaufman, H.E., Nesburn, A.B., Maloney, D.E.: IDU therapy of herpes simplex. Arch. Ophthalmol. 67, 583 (1962b)PubMedCrossRefGoogle Scholar
  119. Kim, B.D., Keenen, S., Bodnar, J.K., Sander, E.G.: Role of enzymatically catalyzed 5-iodo-5,6-dihydrouracil ring hydrolysis on the dehalogenation of 5-iodouracil. J. Biol. Chem. 251, 6909 (1976)PubMedGoogle Scholar
  120. Kim, J.H., Gelbard, A.S., Perez, A.G., Eidinoff, M.L.: Effect of 5-bromodeoxyuridine on nucleic acid and protein synthesis and viability in HeLa cells. Biochim. Biophys. Acta 134, 388 (1967)Google Scholar
  121. Kit, S., Dubbs, D.R., Pierkarski, L.J., Hsu, T.C.: Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine. Exp. Cell Res. 31, 297 (1963)PubMedCrossRefGoogle Scholar
  122. Kit, S., Dubbs, D.R., Frearson, P.M.: HeLa cells resistant to bromodeoxyuridine and deficient in thymidine kinase activity. Int. J. Cancer 7, 19 (1966)CrossRefGoogle Scholar
  123. Klement, V., Nicolson, M.O., Huebner, R.J.: Rescue of the genome of focus forming virus from rat non-productive lines by 5-bromodeoxyuridine. Nature New Biol. 234, 12 (1971)PubMedGoogle Scholar
  124. Kochetkov, N.K., Budovskii, E.I., (eds.): Organic chemistry of nucleic acids, Vols. 1 and 2. London, New York: Plenum Press 1972Google Scholar
  125. Koyama, H., Ono, T.: Further studies on the induction of alkaline phosphatase by 5-bromodeoxyuridine in a hybrid line between mouse and Chinese hamster in culture. Biochim. Biophys. Acta 264, 497 (1972)PubMedCrossRefGoogle Scholar
  126. Kriss, J.P., Tung, L., Bond, S.: The distribution and fate of bromodeoxyuridine in the mouse and rat. Cancer Res. 22, 1257 (1962)PubMedGoogle Scholar
  127. Ku, K.Y., Prusoff, W.H.: A comparative study of the effect of normal substrates and 5-iodo-2′-deoxyuridine triphosphate, a metabolic analog of thymidine triphosphate on the inactivation of Escherichia coli DNA polymerase I and II. J. Biol. Chem. 249, 1239 (1974)PubMedGoogle Scholar
  128. Kulikowski, T., Shugar, D., Nucleic Acid Res. Sp. Publ. 4, 7–10 (1978)Google Scholar
  129. Landolt, A.M.: Resultate der postoperativen Behandlung des Glioblastoma multiforme mit einer strahlensensibilisierenden Substanz (5-bromo-2′deoxyuridine). Acta Neurochir. 24, 263 (1971)CrossRefGoogle Scholar
  130. Langen, P.: Antimetabolites of nucleic acid metabolism. New York: Gordon and Breach 1975Google Scholar
  131. Lapeyre, J.N., Bekhor, I.: Effects of 5-bromo-2′-deoxyuridine and dimethyl sulfoxide on properties and structure of chromatin. J. Mol. Biol. 89, 137 (1974)PubMedCrossRefGoogle Scholar
  132. Lauter, C.B., Bailey, E.J., Lerner, A.M.: Absence of idoxuridine and persistence of herpes simplex virus in brains of patients being treated for encephalitis. Proc. Soc. Exp. Biol. Med. 150, 23 (1975)PubMedGoogle Scholar
  133. Lawley, P.D., Brookes, P.: Ionization of DNA bases or base analogues as a possible explanation of mutagenesis, with special reference to 5-bromodeoxyuridine. J. Mol. Biol. 4, 216 (1962)PubMedCrossRefGoogle Scholar
  134. Lazar, A., Schlesinger, M., Horowitz, A.T., Heller, E.: Induction of a carcinogenic oncornavirus in C57BL/6 mouse embryo cells by 5-iododeoxyuridine. Nature (London) 255, 648 (1975)CrossRefGoogle Scholar
  135. Lee, D.-J., Prensky, W., Krause, G., Hughes, W.L.: Blood thymidine level and iododeoxyuridine incorporation and reutilization in DNA in mice given long-acting thymidine pellets. Cancer Res. 36, 4577 (1976)PubMedGoogle Scholar
  136. Lin, S.Y., Riggs, A.D.: Lac operator analogues: bromodeoxyuridine substitution in the lac operator affects the rate of dissociation of the lac repressor. Proc. Natl. Acad. Sci. 69, 2574 (1972)PubMedCrossRefGoogle Scholar
  137. Lin, S.Y., Lin, D., Riggs, A.D.: Histones bind more tightly to bromodeoxyuridine-substituted DNA than to normal DNA. Nucleic Acid Res. 3, 2183 (1976)PubMedGoogle Scholar
  138. Lin, T.S., Neenan, J.P., Cheng, Y.-C., Prusoff, W.H., Ward, D.C.: Synthesis and antiviral activity of 5- and 5′-substituted thymidine analogs. J. Med. Chem. 19, 495 (1976)PubMedCrossRefGoogle Scholar
  139. Littlefield, J.W.: Studies on thymidine kinase in cultured mouse fibroblasts. Biochim. Biophys. Acta 95, 14 (1965)PubMedGoogle Scholar
  140. Loddo, B., Colla, P.L.: Resistance and dependence in viral chemotherapy. In: Drug resistance and selectivity: Biochemical and cellular basis. Mihich, E. (ed.), p. 221. New York: Academic Press 1973Google Scholar
  141. Loo, T.L., Michael, M.E., Garceau, A.J., Reid, J.C.: 6-Thiouric acid — a metabolite of 6-mercaptopurine. J. Am. Chem. Soc. 81, 3039 (1959)CrossRefGoogle Scholar
  142. Lowy, D.R., Rowe, W.P., Teich, N., Hartley, J.W.: Murine leukemia virus; high-frequency activation in vitro by 5-iododeoxyuridine and 5-bromodeoxyuridine. Science 174, 155 (1971)PubMedCrossRefGoogle Scholar
  143. Lykkesfeldt, A.E., Andersen, H.A.: Preferential inhibition of rDNA transcription by 5-bromodeoxyuridine. J. Cell Sci. 25, 95 (1977)PubMedGoogle Scholar
  144. Maass, G., Haas, R.: Über die Bildung von virusspezifischem SV-40 Antigen in Gegenwart von 5-Jod-2′-deoxyuridin. Arch. Ges. Virusforsch. 18, 253 (1966)PubMedCrossRefGoogle Scholar
  145. Maichuk, Y.F., Pozdnyakov, V.L., Galegov, G.A., Bikbulatov, R.M.: Antiviral activity of 5-bromouridine in an experiment and its therapeutic effectiveness in herpesvirus infection of the eyes. Vop. Virusol. 18, 408 (1973)PubMedGoogle Scholar
  146. Mark, J.B.D., Calabresi, P.: Regional protection in cancer chemotherapy. II. Preliminary studies with hypogastric artery infusion of thymidine during treatment with 5-iodo-2′-deoxyuridine. Cancer Chemother. Rep. 16, 545 (1962)PubMedGoogle Scholar
  147. Mathias, A.P., Fischer, G.A.: The metabolism of thymidine by murine leukemic lymphoblasts (L5178Y). Biochem. Pharmacol. 11, 57 (1962)PubMedCrossRefGoogle Scholar
  148. Mathias, A.P., Fischer, G.A., Prusoff, W.H.: Inhibition of the growth of mouse leukemia cells in culture by 5-iodo-deoxyuridine. Biochim. Biophys. Acta 36, 560 (1959)PubMedCrossRefGoogle Scholar
  149. McCrea, J.R., Lipman, M.B.: Strand-length measurements of normal and 5-iodo-2′-deoxyuridine. treated vaccinia virus deoxyribonucleic acid released by the Kleinschmidt method. J. Virol. 1, 1037 (1967)PubMedGoogle Scholar
  150. McGill, J., Williams, H., McKinnon, J., Holt-Wilson, A.D., Jones, B.R.: Reassessment of idoxuridine therapy of herpetic keratitis. Trans. Ophthal. Soc. U.K. 94, 542 (1974)Google Scholar
  151. Michelson, A.M.: The chemistry of nucleosides and nucleotides. New York: Academic Press 1963Google Scholar
  152. Mohler, W.C., Elkind, M.M.: Radiation response of mammalian cells grown in culture. III. Modification of x-ray survival of Chinese hamster cells by 5-bromodeoxyuridine. Exp. Cell. Res. 30, 481 (1963)CrossRefGoogle Scholar
  153. Morris, N.R., Cramer, J.W.: DNA synthesis by mammalian cells inhibited in culture by 5-iodo-2′-deoxyuridine. deoxyuridine. Mol. Pharmacol. 2, 1 (1966)PubMedGoogle Scholar
  154. Morris, N.R., Cramer, J.W.: 5-iodo-2′-deoxyuridine and DNA synthesis in mammalian cells. Exp. Cell Res. 51, 555 (1968)PubMedCrossRefGoogle Scholar
  155. North, R.D., Pavan-Langston, D., Geary, P.: Herpes simplex virus types 1 and 2: therapeutic response to antiviral drugs. Arch. Ophthal. 94, 1019 (1976)PubMedCrossRefGoogle Scholar
  156. Palayoor, T.: Transcriptional effects of 5-bromo-2′-deoxyuridine. in postimplantation mouse embryos. Experientia 33, 448 (1977)PubMedCrossRefGoogle Scholar
  157. Palmer, C.G.: 5-bromodeoxyuridine-induced constrictions in human chromosomes. Cand. J. Genet. Cytol. 12, 816–830 (1970)Google Scholar
  158. Papac, R.E., Jacobs, E.C., Wong, F., Collom, A., Skoog. W., Wood, D.A.: Clinical evaluation of the pyrimidine nucleosides 5-fluoro-2′-deoxyuridine. and 5-iodo-2′-deoxyuridine. Cancer Chemother. Rep. 20, 143 (1962)PubMedGoogle Scholar
  159. Pawlowski, P.J.: Effect of 5-bromodeoxyuridine on the appearance of cytoplasmic poly-A containing RNA. J. Cell Physiol. 89, 19 (1976)PubMedCrossRefGoogle Scholar
  160. Pennington, T.H.: Effect of 5-bromodeoxyuridine on vaccinia virus-induced polypeptide synthesis: Selective inhibition of the synthesis of some post-replicative polypeptides. J. Virol. 18, 1131 (1976)PubMedGoogle Scholar
  161. Percy, D.H.: Teratogenic effects of the pyrimidine analogues 5-iododeoxyuridine and cytosine arabinoside in late fetal mice and rats. Teratology 11, 103 (1975)PubMedCrossRefGoogle Scholar
  162. Percy, D.H., Albert, D.M.: Developmental defects in rats treated postnatally with 5-iododeoxyuridine (IUdR). Teratology 9, 275 (1974)PubMedCrossRefGoogle Scholar
  163. Percy, D.H., Albert, D.M., Amemiya, T.: Oscular defects in newborn rats treated with 5-iododeoxyuridine. Proc. Soc. Exp. Biol. Med. 14, 1272 (1973)Google Scholar
  164. Perkins, E.S., Ward, R.M., Sears, M.L., Prusoff, W.H., Welch, A.D.: Antiviral activities of several iodinated pyrimidine deoxyribonucleosides. Nature (London) 194, 985 (1962)CrossRefGoogle Scholar
  165. Pontis, H., Degerstedt, G., Reichard, P.: Uridine and deoxyuridine phosphorylases from Ehrlich ascites tumor. Biochim. Biophys. Acta 51, 138 (1961)PubMedCrossRefGoogle Scholar
  166. Price, P.M.: The effect of 5-bromodeoxyuridine on messenger RNA production in cultured cells. Biochim. Biophys. Acta 447, 304 (1976)PubMedGoogle Scholar
  167. Prusoff, W.H.: Effect of 5-bromouracil on utilization of thymidine by Streptococcus faecalis. Proc. Soc. Exp. Biol. Med. 85, 564 (1954)PubMedGoogle Scholar
  168. Prusoff, W.H.: Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta 32, 295 (1959)PubMedCrossRefGoogle Scholar
  169. Prusoff, W.H.: Incorporation of iododeoxyuridine into the deoxyribonucleic acid of mouse Ehrlich ascites tumor cells in vivo. Biochim. Biophys. Acta 39, 327 (1960)PubMedCrossRefGoogle Scholar
  170. Prusoff, W.H., Goz, B.: Chemotherapy — molecular aspects. In: The herpes-viruses. Kaplan, A.S., (ed.), p. 641. New York: Academic Press 1973Google Scholar
  171. Prusoff, W.H., Goz, B.: Halogenated pyrimidine deoxyribonucleosides. In: Antineoplastic and immunosuppressive agents. Sartorelli, A.C., Johns, D.G., (eds.), Vol. II, p. 272. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  172. Prusoff, W.H., Ward, D.C.: Nucleoside analogs with antiviral activity. Biochem. Pharmacol. 25, 1233 (1976)PubMedCrossRefGoogle Scholar
  173. Prusoff, W.H., Jaffe, J.J., Gunther, H.: Studies in the mouse of the pharmacology of 5-iododeoxyuridine, an analogue of thymidine. Biochem. Pharmacol. 3, 110 (1960)PubMedCrossRefGoogle Scholar
  174. Prusoff, W.H., Bakhle, Y.S., McCrea, J.R.: Incorporation of 5-iodo-2′-deoxyuridine. into the deoxyribonucleic acid of vaccinia virus. Nature (London) 199, 1310 (1963)CrossRefGoogle Scholar
  175. Prusoff, W.H., Bakhle, Y.S., Sekely, L.: Cellular and antiviral effects of halogenated deoxyribonucleosides. Ann. N.Y. Acad. Sci. 130, 135 (1965)PubMedCrossRefGoogle Scholar
  176. Puliafito, C.A., Robinson, N.L., Albert, D.M., Pavan-Langston, D., Lin, T.S., Ward, D.C., Prusoff, W.H.: Therapy of experimental herpes simplex keratitis in rabbits with 5-iodo-5′-amino-2′, 5′dideoxyuridine. Proc. Soc. Exp. Bio. Med. 156, 92 (1977)Google Scholar
  177. Rahman, A., Wilson, H.R.: The crystal and molecular structure of 5-iodouridine. Acta Crystallogr. Sect. B 26, 1765 (1970)CrossRefGoogle Scholar
  178. Rapp, F., Vanderslice, D.: Spread of zoster virus in human embryonic lung cells and the inhibitory effect of iododeoxyuridine. Virology 22, 321 (1964)PubMedCrossRefGoogle Scholar
  179. Rapp, F., Butel, J.S., Feldman, L.A., Kitakara, T., Melnick, J.L.: Differential effects of inhibitors on the steps leading to the formation of SV40 tumor and virus antigens. J. Exp. Med. 121, 935 (1965)PubMedCrossRefGoogle Scholar
  180. Renis, H.E.: Chemotherapy of genital herpes simplex virus type 2 infections of female hamsters. Antimicrob. Agents Chemother. 11, 701 (1977)PubMedCrossRefGoogle Scholar
  181. Roizman, B., Aurelian, L., Roane, P.R., Jr.: The multiplication of herpes simplex virus. I. The programming of viral DNA duplication in HEp-2 cells. Virology 21, 482 (1963)PubMedCrossRefGoogle Scholar
  182. Ruffolo, P.R., Ferm, V.H.: The embryocidal and teratogenic effects of 5-bromodeoxyuridine in the pregnant hamster. Lab. Invest. 14, 1547 (1965)PubMedGoogle Scholar
  183. Rupp, W.D., Prusoff, W.H.: Incorporation of 5-iodo-2′-deoxyuridine into bacteriophage T1 as related to ultraviolet-sensitization or -protection. Nature (London) 202, 1288 (1964)CrossRefGoogle Scholar
  184. Rupp, W.D., Prusoff, W.H.: Photochemistry of iodouracil. I. Photoproducts obtained in water. Biochem. Biophys. Res. Commun. 18, 145 (1965 a)PubMedCrossRefGoogle Scholar
  185. Rupp, W.D., Prusoff, W.H.: Photochemistry of iodouracil. II. Effects of sulfur compounds, ethanol and oxygen. Biochem. Biophys. Res. Commun. 18, 158 (1965 b)PubMedCrossRefGoogle Scholar
  186. Rutter, W., Pictet, R., Morris, P.W.: Toward molecular mechanisms of developmental processes. Annu. Rev. Biochem. 42, 601 (1973)PubMedCrossRefGoogle Scholar
  187. Sano, K., Sato, F., Hoshino, T., Nagai, M.: Experimental and clinical studies of radiosensitizers in brain tumors, with special reference to BUdR-antimetabolite continuous regional infusionradiation therapy (BAR therapy). Neurol. Med. Chir. 7, 51 (1965)CrossRefGoogle Scholar
  188. Sano, K., Hoshino, T., Nagai, M.: Radiosensitization of brain tumor cells with a thymidine analogue (bromouridine). J. Neurosurg. 28, 530 (1968)PubMedCrossRefGoogle Scholar
  189. Schiek, W., Schiek, E.: Untersuchung über infektiöses bromdesoxyuridinhaltiges Herpes Virus Hominis, Bestimmung der Dichte und der Sedimentationskonstanten im CsCl-H2O-Dichtegradienten. Arch. Ges. Virusforsch. 28, 229 (1969)PubMedCrossRefGoogle Scholar
  190. Schildkraut, I., Cooper, G.M., Greer, S.: Selective inhibition of the replication of herpes simplex virus by 5-halogenated analogues of deoxycytidine. Mol. Pharmacol. 11, 153 (1975)PubMedGoogle Scholar
  191. Schwartz, S.A.: Enzymatic determination of nonrandom incorporation of 5-bromodeoxyuridine in rat DNA. Biochemistry 15, 3097 (1976)PubMedCrossRefGoogle Scholar
  192. Shugar, D.: In: Antimetabolites in biochemistry, biology and medicine. FEBS Symp., July 10–12, Praque, Czechoslovakia, 1978Google Scholar
  193. Silvester, D.J., White, W.D.: Preparation of very high specific activity IUdR, IUR and iodouracil labelled with iodine 125, 131, 132. Nature (London) 200, 65 (1963)CrossRefGoogle Scholar
  194. Simon, E.H.: Effect of 5-bromodeoxyuridine on cell division and DNA replication HeLa cells. Exp. Cell. Res. 9, 263 (1963)CrossRefGoogle Scholar
  195. Simpson, R.T., Searle, R.L.: Characterization of chromatin extensively substituted with 5-bromodeoxyuridine. Biochemistry 13, 4609 (1974)PubMedCrossRefGoogle Scholar
  196. Singer, J., Stellwagen, R.H., Roberts-Ems, J., Riggs, A.D.: 5-Methylcytosine content of rat hepatoma DNA substituted with bromodeoxyuridine. J. Biol. Chem. 252, 5509 (1977)PubMedGoogle Scholar
  197. Skalko, R.G., Packard, D.S., Jr.: The teratogenic response of the mouse embryo to 5-iododeoxyuridine. Experientia 29, 198 (1973)PubMedCrossRefGoogle Scholar
  198. Skalko, R.G., Packard, D.S., Jr., Schwerdmann, R.N., Raggio, J.F.: The teratogenic response of mouse embryos to 5-bromodeoxyuridine. Teratology 4, 87 (1971)PubMedCrossRefGoogle Scholar
  199. Skalko, R.G., Packard, D.S., Jr., Caniano, D.A., Sax, R.D.: Incorporation of 5-iododeoxyuridine into the DNA of mouse embryos: Its relation to embryotoxicity. Teratology 12, 157 (1975)PubMedCrossRefGoogle Scholar
  200. Smith, J.D., Freeman, G., Vogt, M., Dulbecco, R.: The nucleic acid of polyoma virus. Virology 12, 185 (1960)CrossRefGoogle Scholar
  201. Smith, K.O.: Some biological aspects of herpes virus-cell interactions in the presence of 5-iodo-2′-deoxyuridine (IDU) ; demonstrations of a cytotoxic effect by herpes virus. J. Immunol. 91, 582 (1963)PubMedGoogle Scholar
  202. Smith, K.O., Dukes, C.D.: Effect of 5-iodo-2′-deoxyuridine (IDU) on herpes virus synthesis and survival in infected cells. J. Immunol. 92, 550 (1964)PubMedGoogle Scholar
  203. Stambrook, P., Williamson, R.: Error frequency in 5 S RNA from cells grown in S-bromodeoxyuridine. Europ. J. Biochem. 48, 297 (1974)PubMedCrossRefGoogle Scholar
  204. Stellwagen, R.H., Tomkins, G.M.: Preferential inhibition by 5-bromodeoxyuridine of the synthesis of tyrosine aminotransferase in hepatoma cell cultures. J. Mol. Biol. 56, 167 (1971a)PubMedCrossRefGoogle Scholar
  205. Stellwagen, R.H., Tomkins, G.M.: Differential effect of 5-bromodeoxyuridine on the concentrations of specific enzymes in hepatoma cells in culture. Proc. Natl. Acad. Sci. 68, 1147 (1971 b)PubMedCrossRefGoogle Scholar
  206. Sternglanz, H., Bugg, C.E.: Relationship between the mutagenic and base-stacking properties of halogenated uracil derivatives. The crystal structures of 5-chloro- and 5-bromouracil. Biochim. Biophys. Acta 378, 1 (1975)PubMedGoogle Scholar
  207. Stewart, S.E., Kasnic, G., Jr., Draycott, C., Feller, W., Golden, A., Mitchell, E., Ben, T.: Activation in vitro, by 5-iododeoxyuridine, of a latent virus resembling C-type virus in a human sarcoma cell line. J. Natl. Cancer. Inst. 48, 273 (1972)PubMedGoogle Scholar
  208. Strom, C.M., Dorfman, A.: Distribution of 5-bromodeoxyuridine and thymidine in the DNA of developing chick cartilage. Proc. Natl. Acad. Sci. 73, 1019 (1976)PubMedCrossRefGoogle Scholar
  209. Suarez, H.G., Morris, A.G., Lavialle, C., Cassingena, R.: Enhanced SV40-virus replication in Chinese hamster kidney cells pretreated with 5-iodo-2′-deoxyuridine. Arch. Virol. 50, 249 (1976)PubMedCrossRefGoogle Scholar
  210. Thompson, R.L., Wilkin, M.L., Hitchings, G.H., Elion, G.B., Falco, E.A., Russell, P.B.: The effects of antagonists on the multiplication of vaccinia virus in vitro. Science 110, 454 (1949)PubMedCrossRefGoogle Scholar
  211. Ts’o, P.O.P. (ed.): Basic principles in nucleic acid chemistry, Vols. 1 and 2. New York: Academic Press 1974Google Scholar
  212. Van Rooijen, N.: A comparative study on the uptake in vitro of [3H]thymidine, [131I]5-iodo-2′-deoxyuridine and [3H]deoxycytidine in mouse spleen cells using double isotope autoradiography. J. Immunol. Methods 8, 151 (1975)PubMedCrossRefGoogle Scholar
  213. Vermund, H.: Enhancement of radiation effects by chemotherapy. Acta Radiol. Suppl. 311 (1971)Google Scholar
  214. Visser, D.W., Lagerborg, D.L., Pearson, H.E.: Inhibition of mouse encephalomyelitis virus, in vitro, by certain nucleoprotein derivatives. Proc. Soc. Exp. Biol. Med. 79, 571 (1952)PubMedGoogle Scholar
  215. Visser, D.W., Frisch, D.M., Huang, B.: Synthesis of 5-chlorodeoxyuridine and a comparative study of 5-halodeoxyuridines in E. coli. Biochem. Pharmacol. 5, 157 (1960)PubMedCrossRefGoogle Scholar
  216. Voytek, P.: Purification of thymidine phosphorylase from Escherichia coli and its photoinactivation in the presence of thymine, thymidine, and some halogenated analogs. J. Biol. Chem. 250, 3660 (1975)PubMedGoogle Scholar
  217. Voytek, P., Chang, P.K., Prusoff, W.H.: Kinetic and photochemical studies of 3-N-methyl-5-iodo-2′-deoxyuridine. J. Biol. Chem. 247, 567 (1972)Google Scholar
  218. Watanabe, K.A., Hollenberg, D.H., Fox, J.J.: Nucleosides LXXXV, On mechanisms of nucleoside synthesis by condensation reactions. J. Carb. Nucleosides Nucleotides 1, 1 (1974)Google Scholar
  219. Wataya, Y., Santi, D.V.: Thymidylate synthetase catalyzed dehalogenation of 5-bromo- and 5-iodo-2′deoxyuridylate. Biochem. Biophys. Res. Commun. 67, 818 (1975)PubMedCrossRefGoogle Scholar
  220. Wataya, Y., Negishi, K., Hayatsu, H.: Debromination of 5-bromo-2′-deoxyuridine by cysteine. Formation of deoxyuridine and S-[5-(2′-deoxyuridyl)] cysteine. Biochemistry 12, 3992 (1973)PubMedCrossRefGoogle Scholar
  221. Welch, A.D., Prusoff, W.H.: A synopsis of recent investigations of 5-iodo-2′-deoxyuridine. Cancer Chemother. Rep. 6, 29 (1960)PubMedGoogle Scholar
  222. Welch, A.D., Jaffe, J.J., Cardoso, S.S., Finch, S.C., Calabresi, P., Liebow, A.A., Prusoff, W.H.: Studies on the pharmacology of 5-iododeoxyuridine in animals and man. Proc. Am. Assoc. Cancer Res. 3, 161 (1960)Google Scholar
  223. Wigand, R., Klein, W.: Properties of adenovirus substituted with iododeoxyuridine. Arch. Gesamte Virusforsch. 45, 298 (1974)PubMedCrossRefGoogle Scholar
  224. Wilkof, L.J., Lloyd, H.H., Dulmadge, E.A., Dixon, G.J.: Kinetic evaluation of the effect of hydroxyurea on viability of replicating cultured leukemia L1210 cells. J. Natl. Cancer Inst. 44, 201 (1970)Google Scholar
  225. Yoshikura, H., Zajdela, F.: Induction du virus endogene, type C, par la 5-iododeoxyuridine; augmentation de cette induction par des hydrocarbures polycycliques. C.R. Acad. Sci. 282, 1383 (1976)Google Scholar
  226. Yoshikura, H., Zajdela, F., Perin, F., Perin-Roussel, O., Jacquignon, P., Latarjit, R.: Enhancement of 5-iododeoxyuridine-induced endogenous C-type virus activation by polycyclic hydrocarbons: apparent lack of parallellism between enhancement and carcinogenicity. J. Natl. Cancer Inst 58, 1035 (1977)PubMedGoogle Scholar
  227. Zamenhof, S., De Giovanni, R., Rich, K.: Escherichia coli containing unnatural pyrimidines in its deoxyribonucleic acid. J. Bacteriol. 71, 60 (1956)PubMedGoogle Scholar
  228. Zimmerman, M.: The possible identity of thymidine phosphorylase and pyrimidine deoxyribosyl transferase of rat liver. Biochem. Biophys. Res. Commun. 8, 169 (1962)CrossRefGoogle Scholar
  229. Zorbach, W.W., Tipson, R.S., (eds.): Synthetic procedures in nucleic acid chemistry, Vols. 1 and 2. New York: Interscience Publisher 1968, 1969Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • W. H. Prusoff
  • M. S. Chen
  • P. H. Fischer
  • T. S. Lin
  • G. T. Shiau

There are no affiliations available

Personalised recommendations