Advertisement

Isonicotinic Acid Hydrazide

  • K. Takayama
  • L. A. Davidson
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 1)

Abstract

Reviews of isonicotinic acid hydrazide (isoniazid, INH ; Structure I) containing speculations on its mode of action have been written by Youatt (1969) and Krishna Murti (1975). This review will describe the important effects of INH on mycobacteria and an attempt will be made to relate these effects to the bactericidal action of the drug. INH is a bactericidal agent that is very specific for certain strains of mycobacteria (Pansy et al., 1952). It is one of the simplest of the known chemotherapeutics and its structure is similar to that of nicotinamide (Structure II), which is weakly tuberculostatic (Chorine, 1945).

Keywords

Mycobacterium Tuberculosis Pigment Production Acid Hydrazide Mycolic Acid Fatty Acid Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, N.P.V., Senn, M., Lederer, E.: Sur la présence et la structure de mycolates d’arabinose dans les lipides liés de deux souches de Mycobactéries. C.R. Acad. Sci. C 264, 2173–2176 (1967)Google Scholar
  2. Alshamaony, L., Goodfellow, M., Minnikin, D.E., Mordarska, H.: Free mycolic acids in the classification of Gordona and the ‘ rhodochrous ’ complex. J. Gen. Microbiol. 92, 183–187 (1976 a)PubMedGoogle Scholar
  3. Alshamaony, L., Goodfellow, M., Minnikin, D.E., Mordarska, H.: Free mycolic acids in the classification of Nocardia and the ‘rhodochrous’ complex. J. Gen. Microbiol. 92, 188–199 (1976 b)Google Scholar
  4. Ames, B.N., Lee, F.D., Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. USA 70, 782–786 (1973)PubMedCrossRefGoogle Scholar
  5. Andrejew, A., Taquet, A., Gernez-Rieux, Ch.: Activite catalitique des mycobactéries. Ann. Inst. Pasteur 91, 767–770 (1956)Google Scholar
  6. Andrejew, A., Gernez-Rieux, Ch., Taquet, A.: Action de l’INH et de la D-cycloserine sur la Peroxydase purifée et sur la activité peroxydasique des bacilles tuberculeux. Ann. Inst. Pasteur 96, 145–162 (1959)Google Scholar
  7. Asselineau, A.: The bacterial lipids, p. 174. Paris: Herman; San Francisco: Holden-Day 1966 Azuma, I., Yamamura, Y.: Studies on the firmly bound lipids of human tubercle bacillus II. Isolation of arabinose mycolate and identification of its chemical structure. J. Biochem. (Tokyo) 53, 275–281 (1962)Google Scholar
  8. Barclay, W.R., Ebert, R.H., Koch-Weser, D.: Mode of action of isoniazid. Am. Rev. Tuberc. 67, 490–496 (1953)PubMedGoogle Scholar
  9. Beggs, W.H., Jenne, J.W., Hall, W.H.: Isoniazid uptake in relation to growth inhibition of Mycobacterium tuberculosis. J. Bacteriol. 96, 293–297 (1968)PubMedGoogle Scholar
  10. Bekierkunst, A.: Nicotinamide-adenine dinucleotide in tubercle bacilli exposed to isoniazid. Science 152, 525–526 (1966)PubMedCrossRefGoogle Scholar
  11. Bekierkunst, A., Bricker, A.: Studies on the mode of action of isoniazid on mycobacteria. Arch. Biochem. Biophys. 122, 385–392 (1967)PubMedCrossRefGoogle Scholar
  12. Bloch, H., Defaye, J., Lederer, E., Noll, H.: Constituents of a “toxic lipid” obtained from Mycobacterium tuberculosis. Biochim. Biophys. Acta 23, 312–321 (1957)PubMedCrossRefGoogle Scholar
  13. Boone, I., Strang, V., Rogers, B.: Effect of pyridoxal on uptake of C14-activity from labelled isoniazid by Mycobacterium tuberculosis. Am. Rev. Tuberc. 76, 568–578 (1957)PubMedGoogle Scholar
  14. Brennan, P.J., Lehane, D.P., Thomas, D.W.: Acyl glucoses of the Corynebacteria and Mycobacteria. Eur. J. Biochem. 13, 117–123 (1970)PubMedCrossRefGoogle Scholar
  15. Chorine, V.: Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. C.R. Acad. Sci. 220, 150–151 (1945)Google Scholar
  16. Cirnu-Georgian, L., Lenghel, V.: Isoniazid-induced chromosome aberrations. Lancet 2, 93 (1971)PubMedCrossRefGoogle Scholar
  17. Davis, W.B., Weber, M.W.: Specificity of isoniazid on growth inhibition and competition for an oxidized nicotinamide adenine dinucleotide regulatory site on the electron transport pathway in Mycobacterium phlei. Antimicrob. Agents Chemother. 12, 213–218 (1977)PubMedGoogle Scholar
  18. DiAugustine, R.P.: Formation in vivo and in vitro of the isonicotinic acid hydrazide analogue of nicotinamide adenine dinucleotide by lung nicotinamide adenine dinucleotide glycohydrolase. Mol. Pharmacol. 12, 291–298 (1976)PubMedGoogle Scholar
  19. Diaz, G.A., Wayne, L.G.: Isolation and characterization of catalase produced by Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 110, 312–319 (1974)PubMedGoogle Scholar
  20. Ellard, G.A., Gammon, P.T.: Pharmacokinetics of isoniazid metabolism in man. J. Pharmakinet. Biopharm. 4, 83–113 (1976)CrossRefGoogle Scholar
  21. Etémadi, A.H.: Sur la structure des acides mycoliques méthoxylés isolés de la souche humaine Test de Mycobacterium tuberculosis. C.R. Acad. Sci. C263, 1257–1259 (1966)Google Scholar
  22. Etémadi, A.H.: Les acides mycoliques structure, biogenèse et intérât phylogénétique. Expo. Annu. Biochim. Med. 28, 77–109 (1967 a)Google Scholar
  23. Etémadi, A.H.: Isomerisation de mycolates de méthyle en milieu alcalin. Chem. Phys. Lipids 1, 165–175 (1967 b)CrossRefGoogle Scholar
  24. Fishbain, D., Ling, G., Kushner, D.J.: Isoniazid metabolism and binding by sensitive and resistant strains of Mycobacterium smegmatis. Can. J. Microbiol. 18, 783–792 (1972)PubMedCrossRefGoogle Scholar
  25. Flick, P.K., Block, K.: In vitro alterations of the product distribution of the fatty acid synthetase from Mycobacterium phlei. J. Biol. Chem. 249, 1031–1036 (1974)PubMedGoogle Scholar
  26. Fulco, A., Bloch, K.: Cofactor requirements for the formation of Δ9-unsaturated fatty acids in Mycobacterium phlei. J. Biol. Chem. 239, 993–997 (1964)PubMedGoogle Scholar
  27. Gayathri Devi, B., Ramakrishnan, T., Gopinathan, K.P.: Studies on an enzyme reacting with isoniazid from Mycobacterium tuberculosis H37Rv. Proc. Indian Acad. Sci., Sect. B 80, 240–252 (1974)Google Scholar
  28. Gayathri Devi, B., Shaila, M.S., Ramakrishnan, T., Gopinathan, K.P.: The purification and properties of peroxidase in Mycobacterium tuberculosis H37Rv and its possible role in the mechanism of action of isonicotinic acid hydrazide. Biochem. J. 149, 187–197 (1975)Google Scholar
  29. Goldman, D.S.: On the mechanism of action of isonicotinic acid hydrazide. J. Am. Chem. Soc. 76, 2841–2842 (1954)CrossRefGoogle Scholar
  30. Gopinathan, K.P., Sirsi, M., Ramakrishnan, T.: Nicotinamide-adenine nucleotide of Mycobacterium tuberculosis H37Rv. Biochem. J. 87, 444–448 (1963)PubMedGoogle Scholar
  31. Gopinathan, K.P., Sirsi, M., Vaidyanathan, C.S.: Nicotinamide adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem. J. 91, 277–282 (1964)PubMedGoogle Scholar
  32. Gopinathan, K.P., Sirsi, M., Vaidyanathan, C.S.: Purification and properties of an inhibitor for nicotinamide adenine dinucleotidase from Mycobacterium tuberculosis H37Rv. Arch. Biochem. Biophys. 113, 376–382 (1966)PubMedCrossRefGoogle Scholar
  33. Jackett, P.S., Aber, V.R., Mitchison, D.A.: The relationship between nicotinamide adenine dinucleotide concentration and antibacterial activity of isoniazid on Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 115, 601–607 (1977)PubMedGoogle Scholar
  34. Kanetsuna, F.: Chemical analyses of mycobacterial cell walls. Biochim. Biophys. Acta 158, 130–143 (1968)PubMedCrossRefGoogle Scholar
  35. Kaplan, N.O., Ciotti, M.M., Hamolsky, M., Bieber, R.E.: Molecular heterogeneity and the evolution of enzymes. Science 131, 392–397 (1960)PubMedCrossRefGoogle Scholar
  36. Kashiwabara, Y., Sato, R.: Electron transport mechanism involved in stearoyl-coenzyme A desaturation by particulate fraction of Mycobacterium phlei. J. Biochem. (Tokyo) 74, 405–413 (1973)Google Scholar
  37. Keith, A.D., Snipes, W.: Viscosity of cellular protoplasm. Science 183, 666–668 (1974)PubMedCrossRefGoogle Scholar
  38. Kern, M., Natale, R.: A diphosphopyridine nucleotidase and its protein inhibitor from Mycobacterium butyricum. J. Biol. Chem. 231, 41–51 (1958)PubMedGoogle Scholar
  39. Klamerath, O.L.: Inhibition of transcription by isonicotinic acid hydrazide. Mutat. Res. 35, 53–64 (1976)CrossRefGoogle Scholar
  40. Krishna Murti, C.R.: Isonicotinic acid hydrazide. In: Antibiotics. Corcoran, J.W., Hahn, F.E. (eds.), Vol. III, pp. 623–652. New York, Heidelberg, Berlin: Springer 1975Google Scholar
  41. Krüger-Thiemer, E.: Isonicotinic acid hypothesis of the antituberculous action of isoniazid. Am. Rev. Tuberc. 77, 364–367 (1958)Google Scholar
  42. Lederer, E., Adam, A., Coirbaru, R., Petit, J.-F., Weitzerbin, J.: Cell walls of mycobacteria and related organisms; chemistry and immunostimulant properties. Mol. Cell. Biochem. 7, 87–104 (1975)PubMedCrossRefGoogle Scholar
  43. McClatchy, J.K.: Mechanism of action of isoniazid on Mycobacterium bovis strain BCG. Infect. Immun. 3, 530–534 (1971)PubMedGoogle Scholar
  44. Middlebrook, G., Cohn, M.L., Schaefer, W.B.: Studies on isoniazid and tubercule bacilli, the isolation, drug susceptibility and catalase testing of tubercle bacilli from isoniazid-treated patients. Am. Rev. Tuberc. 70, 852–872 (1954)PubMedGoogle Scholar
  45. Minnikin, D.E., Polgar, N.: Studies on the mycolic acids from human tubercle bacilli. Tetrahedron Lett. 2643–2647 (1966)Google Scholar
  46. Minnikin, D.E., Polgar, N.: Structural studies on the mycolic acids. Chem. Commun. 312–314 (1967 a)Google Scholar
  47. Minnikin, D.E., Polgar, N.: The mycolic acids from human and avian tubercle bacilli. Chem. Commun. 916–918 (1967 b)Google Scholar
  48. Minnikin, D.E., Polgar, N.: The methoxymycolic and ketomycolic acids from human tubercle bacilli. Chem. Commun. 1172–1174 (1967 c)Google Scholar
  49. Minnikin, D.E., Patel, P.V., Goodfellow, M.: Mycolic acids of representative strains of Nocardia and the ‘ rhodochrous’ complex. FEBS Lett. 39, 322–324 (1974)PubMedCrossRefGoogle Scholar
  50. Mitchison, D.A., Selkon, J.B.: The bactericidal activities of antitubercular drugs. Am. Rev. Tuberc. Suppl. 74, 109–123 (1956)Google Scholar
  51. Nelson, S.D., Mitchell, J.R., Timbrell, J.A., Snodgrass, W.R., Corcoran, G.B. III.: Isoniazid and iproniazid: Activation of metabolites to toxic intermediates in man and rat. Science 193, 901–903 (1976)PubMedCrossRefGoogle Scholar
  52. Nestler, H.J.: Chemische Untersuchungen zum Wirkungsmechanismus des isoniazids. Arzneimittelforschung (Drug. Res.) 16, 1442–1447 (1966)Google Scholar
  53. Newton, B.A.: The properties and mode of action of the polymyxins. Bacteriol. Rev. 20, 14–27 (1956)PubMedGoogle Scholar
  54. Noll, H.: The chemistry of some native constituents of the purified wax of Mycobacterium tuberculosis. J. Biol. Chem. 224, 149–164 (1957)PubMedGoogle Scholar
  55. Noll, H., Bloch, H., Asselineau, J., Lederer, E.: The chemical structure of cord factor of Mycobacterium tuberculosis. Biochim. Biophys. Acta 20, 299–309 (1956)PubMedCrossRefGoogle Scholar
  56. Pansy, F., Stander, H., Donovick, R.: In vitro studies on isonicotinic acid hydrazide. Am. Rev. Tuberc. 65, 761–764 (1952)PubMedGoogle Scholar
  57. Pierard, A., Goldman, D.S.: Enzyme systems in the mycobacteria. 14. Fatty acid synthesis in cell-free extracts Mycobacterium tuberculosis. Arch. Biochem. Biophys. 100, 56–65 (1963)PubMedCrossRefGoogle Scholar
  58. Röhrborn, G., Propping, P., Buselmaier, W.: Mutagenic activity of isoniazid and hydrazine in mammalian test systems. Mutation Res. 16, 189–194 (1972)PubMedCrossRefGoogle Scholar
  59. Schaefer, W.B.: Effect of INH on growing and resting tubercle bacilli. Am. Rev. Tuberc. 69, 125–127 (1954)PubMedGoogle Scholar
  60. Seydel, J.K., Tono-Oka, S., Schaper, K.-J., Bock, L., Wiencke, M.: Mode of action of isoniazid (INH). Short communication: Isolation and identification of an analog of NAD from 3H-INH treated bacterial cells. Arzneimittelforschung (Drug Res.) 26, 477–478 (1976)Google Scholar
  61. Sriprakash, K.S., Ramakrishnan, T.: Comparative study of nicotinamide adenine dinucleotide nucleosidase from Mycobacterium tuberculosis and pig brain: Effect of isonicotinic acid hydrazide on the enzyme-inhibitor complex. Indian J. Biochem. 3, 211–214 (1966)PubMedGoogle Scholar
  62. Sriprakash, K.S., Ramakrishnan, T.: Studies on the mechanism of isoniazid resistance in Mycobacterium tuberculosis H37Rv. Indian J. Biochem. 5, 185–187 (1968)PubMedGoogle Scholar
  63. Sriprakash, K.S., Ramakrishnan, T.: Isoniazid and nicotinamide adenine dinucleotide synthesis in Mycobacterium tuberculosis. Indian J. Biochem. 6, 49–50 (1969)PubMedGoogle Scholar
  64. Sriprakash, K.S., Ramakrishnan, T.: Isoniazid-resistant mutants of M. tuberculosis H37Rv: Uptake of isoniazid and the properties of the NADase inhibitor. J. Gen. Microbiol. 60, 125–132 (1970)PubMedGoogle Scholar
  65. Stanford, J.L., Grange, J.M.: The meaning and structure of species as applied to mycobacteria. Tubercle 55, 143–152 (1974)PubMedCrossRefGoogle Scholar
  66. Strominger, J.L., Tipper, D.J.: Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Am. J. Med. 39, 708–721 (1965)PubMedCrossRefGoogle Scholar
  67. Takayama, K.: Selective action of isoniazid on the synthesis of cell wall mycolates in mycobacteria. Ann. N.Y. Acad. Sci. 235, 426–438 (1974)PubMedCrossRefGoogle Scholar
  68. Takayama, K., Armstrong, E.L.: Isolation, characterization, and function of 6-mycolyl-6′-acetyltrehalose in the H37Ra strain of Mycobacterium tuberculosis. Biochemistry 15, 441–447 (1976)PubMedCrossRefGoogle Scholar
  69. Takayama, K., Armstrong, E.L.: Metabolic role of free mycolic acids in Mycobacterium tuberculosis. J. Bacteriol. 130, 569–570 (1977)PubMedGoogle Scholar
  70. Takayama, K., Wang, L., David, H.L.: Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth and viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2, 29–35 (1972)PubMedGoogle Scholar
  71. Takayama, K., Wang, L., Merkal, R.S.: Scanning electron microscopy of the H37Ra strain of Mycobacterium tuberculosis exposed to isoniazid. Antimicrob. Agents Chemother. 4, 62–65 (1973)PubMedGoogle Scholar
  72. Takayama, K., Armstrong, E.L., David, H.L.: Restoration of mycolate synthetase activity in Mycobacterium tuberculosis exposed to isoniazid. Am. Rev. Respir. Dis. 110, 43–48 (1974)PubMedGoogle Scholar
  73. Takayama, K., Keith, A.D., Snipes, W.: Effect of isoniazid on the protoplasmic viscosity in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 7, 22–24 (1975 a)PubMedGoogle Scholar
  74. Takayama, K., Schnoes, H.K., Armstrong, E.L., Boyle, R.W.: Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J. Lipid Res. 16, 308–317 (1975 b)PubMedGoogle Scholar
  75. Takayama, K., Qureshi, N., Schnoes, H.K.: Isolation and characterization of the monounsaturated long-chain fatty acids of Mycobacterium tuberculosis. Submitted for publication (1977)Google Scholar
  76. Takayama, K., Qureshi, N., Jordi, J.C., Schnoes, H.K.: Separation of homologous series of mycolic acids from Mycobacterium tuberculosis H37Ra by high performance liquid chromatography. In: LC Symposium I: Biological biomedical applications of liquid chromatography. Hawk, G.L. (ed.). New York: Marcel Dekker Inc. 1979Google Scholar
  77. Tirunarayanan, M.O., Vischer, W.A.: Relationship of isoniazid to the metabolism of mycobacteria. Am. Rev. Tuberc. 75, 62–70 (1957)PubMedGoogle Scholar
  78. Toida, I.: Isoniazid hydrolysing enzyme of mycobacteria. Am. Rev. Respir. Dis. 85, 720–726 (1962)PubMedGoogle Scholar
  79. Tsumita, T.: Studies on the lipid of BCG 1. Glyceryl mono-mycolate in wax C fractions of the lipids of BCG. Jpn. J. Med. Sci. Biol. 9, 205–216 (1956)PubMedGoogle Scholar
  80. Wang, L., Takayama, K.: Relationship between uptake of isoniazid and its action on in vivo mycolic acid synthesis in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2, 438–441 (1972)PubMedGoogle Scholar
  81. Wimpenny, J.W.T.: The uptake and metabolism of isoniazid in Mycobacterium tuberculosis var. bovis BCG. J. Gen. Microbiol. 47, 389–403 (1967)PubMedGoogle Scholar
  82. Winder, F.G.: The antibacterial action of streptomycin, isoniazid and PAS. In: Chemotherapy of tuberculosis. Barry, V.C. (ed.), p. 111. London: Butterworth 1964a Winder, F.G.: Early changes induced by isoniazid in the composition of Mycobacterium tuberculosis. Biochim. Biophys. Acta 82, 210–212 (1964 b)Google Scholar
  83. Winder, F.G., Collins, P.B.: The effect of isoniazid on nicotinamide adenine dinucleotide concentrations in tubercle bacilli. Am. Rev. Respir. Dis. 100, 101–103 (1969)PubMedGoogle Scholar
  84. Winder, F.G., Collins, P.B.: Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J. Gen. Microbiol. 63, 41–48 (1970)PubMedGoogle Scholar
  85. Winder, F.G., Rooney, S.A.: Effects of isoniazid on the carbohydrate metabolism of Mycobacterium tuberculosis BCG. Biochem. J. 117, 355–368 (1970)PubMedGoogle Scholar
  86. Winder, F.G., Brennan, P.J., McDonnell, I.: Effects of isoniazid on the composition of mycobacteria with particular reference to soluble carbohydrates and related substances. Biochem. J. 104, 385–393 (1967)PubMedGoogle Scholar
  87. Winder, F.G., Collins, P.B., Rooney, S.A.: Effects of isoniazid on mycolic acid synthesis in Mycobacterium tuberculosis and on its cell envelope. Biochem. J. 117, 27P (1970)PubMedGoogle Scholar
  88. Worcel, A., Goldman, P.S., Cleland, W.W.: An allosteric reduced nicotinamide adenine dinucleotide oxidase from Mycobacterium tuberculosis. J. Biol. Chem. 240, 3399–3407 (1965)PubMedGoogle Scholar
  89. Youatt, J.: The uptake of isoniazid by washed cell suspensions of Mycobacteria and other species. Aust. J. Exp. Biol. Med. Sci. 36, 223–232 (1958 a)PubMedCrossRefGoogle Scholar
  90. Youatt, J.: Metabolism of isoniazid by Mycobacterium tuberculosis BCG with reference to current theories of the mode of action. Am. Rev. Tuberc. 78, 806–809 (1958 b)PubMedGoogle Scholar
  91. Youatt, J.: The metabolism of isoniazid and other hydrazides by Mycobacteria. Aust. J. Exp. Biol. Med. Sci. 38, 245–250 (1960 a)PubMedCrossRefGoogle Scholar
  92. Youatt, J.: The uptake of isoniazid and related compounds by Mycobacteria. Aust. J. Exp. Biol. Med. Sci. 38, 331–337 (1960 b)PubMedCrossRefGoogle Scholar
  93. Youatt, J.: The formation of 4-pyridylmethanol from isonicotinic acid hydrazide (isoniazid) by mycobacteria. Aust. J. Chem. 14, 308–311 (1961 a)CrossRefGoogle Scholar
  94. Youatt, J.: Pigments produced by Mycobacteria on exposure to isoniazid. Aust. J. Exp. Biol. Med. Sci. 39, 93–100 (1961 b)PubMedCrossRefGoogle Scholar
  95. Youatt, J.: The metabolism of isoniazid and pyridine aldehydes by Mycobacteria. Aust. J. Exp. Biol. Med. Sci. 40, 191–205 (1962)PubMedCrossRefGoogle Scholar
  96. Youatt, J.: Changes in the phosphate content of Mycobacteria produced by exposure to isoniazid and ethambutol. Aust. J. Exp. Biol. Med. Sci. 43, 305–314 (1965)PubMedCrossRefGoogle Scholar
  97. Youatt, J.: A review of the action of isoniazid. Am. Rev. Resp. Dis. 99, 729–749 (1969)PubMedGoogle Scholar
  98. Youatt, J., Tham, S.H.: An enzyme system of Mycobacterium tuberculosis that reacts specifically with isoniazid. I. Am. Rev. Resp. Dis. 100, 25–30 (1969 a)Google Scholar
  99. Youatt, J., Tham, S.H.: An enzyme system of Mycobacterium tuberculosis that reacts specifically with isoniazid. II. Correlation of this reaction with the binding and metabolism of isoniazid. Am. Rev. Respir. Dis. 100, 31–37 (1969 b)PubMedGoogle Scholar
  100. Youatt, J., Tham, S.H.: Radioactive content of Mycobacterium tuberculosis after exposure to 14C-isoniazid. Am. Rev. Respir. Dis. 100, 77–78 (1969 c)PubMedGoogle Scholar
  101. Zatman, L.J., Kaplan, N.O., Colowick, S.P.: Inhibition of spleen diphosphopyridine nucleotidase by nicotinamide, an exchange reaction. J. Biol. Chem. 200, 197–212 (1953)PubMedGoogle Scholar
  102. Zatman, L.J., Kaplan, N.O., Colowick, S.P., Ciotti, M.M.: Effect of isonicotinic acid hydrazide on diphosphopyridine nucleotidases. J. Biol. Chem. 209, 453–466 (1954 a)PubMedGoogle Scholar
  103. Zatman, H.L., Kaplan, H.O., Colowick, S.P., Ciotti, M.M.: The isolation and properties of the isonicotinic acid hydrazide analog of diphosphopyridine nucleotide. J. Biol. Chem. 209, 467–484 (1954 b)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • K. Takayama
  • L. A. Davidson

There are no affiliations available

Personalised recommendations