Advertisement

Ionophore Antibiotics

  • E. P. Bakker
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 1)

Abstract

Ionophore antibiotics are compounds produced by microorganisms (mainly spore-forming bacteria) ; they act by specifically increasing the ion permeability of the cell membrane. In Vol. I of this series, the then well-known ionophore antibiotics valinomycin (Hunter and Schwartz, 1967 a), gramicidin (Hunter and Schwartz, 1967 c), nigericin (Shaw, 1967 a), and monactin (Shaw, 1967 b) were discussed. At that time it was recognized that an ionophore acts at the membrane level, but the mechanism by which it does so was still controversial. In the decade which has since elapsed, many new ionophores became available, and most of the details of their mechanism of action were elucidated. As it has turned out, medical and pharmaceutical applications of ionophores are limited, since the activity of ionophores is not restricted to microbial membranes. On the other hand, ionophores were found to be wonderful tools in biochemical research at the cellular or membrane level.

Keywords

Monovalent Cation Lipid Bilayer Membrane Transmembrane Channel Polyene Antibiotic Neutral Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasaki, K., Karasawa, K., Watanabe, M., Yonehara, H., Umezawa, H.: Monazomycin, a new antibiotic produced by a Streptomyces. J. Antibiot. A16, 127–131 (1963)Google Scholar
  2. Akerman, K.E.O., Wikström, M.K.F.: Safranine as a probe of the mitochrondrial membrane potential. FEBS Lett. 68, 191–197 (1976)PubMedGoogle Scholar
  3. Alvarez, O., Diaz, E., Latorre, R.: Voltage-dependent conductance induced by hemocyanin in black lipid films. Biochim. Biophys. Acta 389, 444–448 (1975)PubMedGoogle Scholar
  4. Andreoli, T.E., Monahan, M.: The interaction of polyene antibiotics with thin lipid membranes. J. Gen. Physiol. 52, 300–325 (1968)PubMedGoogle Scholar
  5. Asher, I.M., Rothschild, K.J., Stanley, H.E.: Raman spectroscopic study of the valinomycin-KSCN complex. J. Mol. Biol. 89, 205–220 (1974)PubMedGoogle Scholar
  6. Azzi, A., Gherardini, P., Santato, M.: Fluorochrome interaction with the mitochondria membrane. The effect of energy conservation. J. Biol. Chem. 246, 2035–2042 (1971)Google Scholar
  7. Bakker, E.P., Van den Heuvel, E.J., Wiechmann, A.H.C.A., Van Dam, K.: A comparison between the effectiveness of uncouplers of oxidative phosphorylation in mitochondria and in different artificial membrane systems. Biochim. Biophys. Acta 292, 78–87 (1973)PubMedGoogle Scholar
  8. Bamberg, E., Benz, R.: Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electrical field on gramicidin A channel formation. Biochim. Biophys. Acta 426, 570–580 (1976)PubMedGoogle Scholar
  9. Bamberg, E., Janko, K.: Single channel conductance of lipid bilayer membranes in presence of monazomycin. Biochim. Biophys. Acta 426, 447–450 (1976)PubMedGoogle Scholar
  10. Bamberg, E., Janko, K.: The action of carbonsuboxide dimerized gramicidin A on lipid bilayer membranes. Biochim. Biophys. Acta 465, 486–499 (1977)PubMedGoogle Scholar
  11. Bamberg, E., Läuger, P.: Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membr. Biol. 11, 177–194 (1973)PubMedGoogle Scholar
  12. Bamberg, E., Apell, H.J., Alpes, H.: Structure of gramicidin A channel: discrimination between the πL,D and the β helix by electrical measurements with lipid-bilayer membranes. Proc. Natl. Acad. Sci. U.S.A. 74, 2402–2406 (1977)PubMedGoogle Scholar
  13. Baumann, G., Mueller, P.: A molecular model of membrane excitability. J. Supramol. Struct. 2, 538–557 (1974)PubMedGoogle Scholar
  14. Bean, R.C., Shephard, W.C., Chan, H., Eichner, J.: Discrete conductance fluctuation in lipid bilayer protein membranes. J. Gen. Physiol. 53, 741–757 (1969)PubMedGoogle Scholar
  15. Benz, R., Läuger, P.: Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique. J. Membr. Biol. 27, 171–191 (1976)PubMedGoogle Scholar
  16. Benz, R., Stark, G.: Kinetics of macrotetrolide-induced ion transport across lipid-bilayer membranes. Biochim. Biophys. Acta 382, 27–40 (1975)PubMedGoogle Scholar
  17. Benz, R., Fröhlich, O., Läuger, P.: Influence of membrane structure on the kinetics of carrier mediated ion transport through lipid bilayers. Biochim. Biophys. Acta 464, 465–481 (1977)PubMedGoogle Scholar
  18. Berger, J., Rachlin, A.I., Scott, W.E., Sternbach, L.H., Goldberg, M.W.: The isolation of three new crystalline antibiotics from Streptomyces. J. Am. Chem. Soc. 73, 5295–5298 (1951)Google Scholar
  19. Bielawski, J., Thompson, T.E., Lehninger, A.L.: The effect of 2,4-dinitrophenol on the electrical resistance of phospholipid bilayer membranes. Biochem. Biophys. Res. Commun. 24, 948–954 (1966)PubMedGoogle Scholar
  20. Bodanszky, M., Perlman, D.: Peptide antibiotics. Science 163, 352–358 (1969)PubMedGoogle Scholar
  21. Boheim, G.: Statistical analysis of alamethicin channels in black lipid membranes. J. Membr. Biol. 19, 277–303 (1974)PubMedGoogle Scholar
  22. Boheim, G., Hall, J.E.: Oscillation phenomena in black lipid membranes induced by a single alamethicin pore. Biochim. Biophys. Acta 389, 436–443 (1975)PubMedGoogle Scholar
  23. Boheim, G., Janko, K., Leibfritz, D., Ooka, T., König, W.A., Jung, G.: Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin, Part B. Pore formation in black lipid films. Biochim. Biophys. Acta 433, 182–199 (1976)PubMedGoogle Scholar
  24. Brockmann, H., Schmidt-Kastner, G.: Valinomycin I; XXVII Mitteilung über Antibiotica aus Actinomyceten. Chem. Ber. 88, 57–61 (1955)Google Scholar
  25. Bukovsky, J.: Production, purification, and characterization of excitability-inducing molecule. J. Biol. Chem. 252, 8884–8889 (1977)PubMedGoogle Scholar
  26. Byrn, S.R.: The cation-binding properties of gramicidin. Biochemistry 13, 5186–5192 (1974)PubMedGoogle Scholar
  27. Case, G.D., Vanderkooi, J.M., Scarpa, A.: Physical properties of biological membranes determined by the fluorescence of the calcium ionophore A 23187. Arch. Biochem. Biophys. 162, 174–185 (1974)PubMedGoogle Scholar
  28. Cass, A., Finkelstein, A., Krespi, V.: The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56, 100–124 (1970)PubMedGoogle Scholar
  29. Celis, H., Estrada-O, S., Montai, M.: Model translocators for divalent and monovalent ion transport in phospholipid membranes. I. The ion permeability induced in lipid hilayers by the antibiotic X-537A. J. Memb. Biol. 18, 187–199 (1974)Google Scholar
  30. Chaney, M.O., DeMarco, P.V., Jones, N.D., Occolowitz, J.L.: The structure of A 23187, a divalent cation ionophore. J. Am. Chem. Soc. 96, 1932–1933 (1974)PubMedGoogle Scholar
  31. Chaney, M.O., Jones, N.D., Debono, M.: The structure of the divalent calcium complex of A 23187, a divalent cation ionophore antibiotic. J. Antibiot. 29, 424–427 (1976)PubMedGoogle Scholar
  32. Chapman, D., Cornall, B.A., Eliasz, A.W., Perry, A.: Interactions of helical polypeptide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system. J. Mol. Biol. 113, 517–538 (1977)PubMedGoogle Scholar
  33. Chappel, J.B., Crofts, A.R.: Gramicidin and ion transport in isolated mitochondria. Biochem. J. 95, 393–402 (1965)Google Scholar
  34. Ciani, S.: Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes. II. A theoretical model. J. Membr. Biol. 30, 45–63 (1976)PubMedGoogle Scholar
  35. Cockrell, R.S., Harris, E.J., Pressman, B.C.: Synthesis of ATP driven by a potassium gradient in mitochondria. Nature (London) 215, 1487–1488 (1967)Google Scholar
  36. Corbaz, R., Ettlinger, L., Gäumann, E., Keller-Schierlein, W., Kradolfer, F., Neipp, L., Prelog, V., Zähner, H.: Stoffwechselprodukte von Actinomyceten. III. Nonactin. Helv. Chim. Acta 38, 1445–1448 (1955)Google Scholar
  37. Crane, R.K.: The gradient hypothesis and other models of carrier-mediated active transport. Rev. Physiol. Biochem. Pharmacol. 78, 99–159 (1977)PubMedGoogle Scholar
  38. Cunarro, J., Weiner, M.W.: Quantitative correlation between the proton-carrying and respiratory-stimulating properties of uncoupling agents using rat-liver mitochondria. Nature (London) 245, 36–37 (1973)Google Scholar
  39. Deber, C.M., Pfeiffer, D.R.: Ionophore A 23187. Solution of conformations of the calcium complex and free acid deduced from proton and carbon-13 nuclear magnetic resonance studies. Biochemistry 15, 132–141 (1976)PubMedGoogle Scholar
  40. DeKruyff, B., Demel, R.A.: Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim. Biophys. Acta 339, 57–70 (1974)Google Scholar
  41. Devore, D.I., Nastuk, W.L.: Effects of “calcium ionophore” X-537A on frog muscle. Nature (London) 253, 644–646 (1975)Google Scholar
  42. Dobler, M.: The crystal structure of nonactin. Helv. Chim. Acta 55, 1371–1384 (1972)PubMedGoogle Scholar
  43. Dobler, M., Dunitz, J.D., Krajewski, J.: Structure of the K+ complex with Enniatin B, a macrocyclic antibiotic with K+ transport properties. J. Mol. Biol. 42, 603–606 (1969)PubMedGoogle Scholar
  44. Dubos, R.J., Hotchkiss, R.D., Coburn, A.F.: The effect of gramicidin and tyrocidine on bacterial metabolism. J. Biol. Chem. 146, 421–426 (1942)Google Scholar
  45. Duszynski, J., Wojtczak, L.: Effect of Mg2+ depletion of mitochondria on their permeability to K+: the mechanism by which ionophore A 23187 increases K+ permeability. Biochem. Biophys. Res. Commun. 74, 417–424 (1977)PubMedGoogle Scholar
  46. Ehrenstein, G., Lecar, H.: Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 10, 1–34 (1977)PubMedGoogle Scholar
  47. Eisenberg, M., Hall, J.E., Mead, C.A.: The nature of the voltage-dependent conductance induced by alamethicin in black-lipid membranes. J. Membr. Biol. 14, 143–176 (1973)PubMedGoogle Scholar
  48. Eisenman, G., Szabo, G., McLaughlin, S.G.A., Ciani, S.M.I.: Molecular basis for the action of macrocyclic antibiotics on membranes. In: Molecular mechanisms of antibiotic action on protein biosynthesis and membranes. Munoz, E., Garcia-Ferrandiz, F., Vazquez, D. (eds.), pp. 545–602. Amsterdam: Elsevier 1972Google Scholar
  49. Ermishkin, L.N., Kasumov, Kh.M., Potzeluyev, V.M.: Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatin. Nature (London) 262, 698–699 (1976)Google Scholar
  50. Ermishkin, L.N., Kasumov, Kh.M., Potseluyev, V.M.: Properties of amphotericin B channels in a lipid bilayer. Biochim. Biophys. Acta 470, 357–367 (1977)PubMedGoogle Scholar
  51. Estrada-O, S., Celis, H., Calderon, E., Gallo, G., Montai, M.: Model translocators for divalent and monovalent ion transport in phospholipid membranes. II. The effect of ion translocator X-537A on the energy-conserving properties of mitochondrial membranes. J. Memb. Biol. 18, 201–218 (1974)Google Scholar
  52. Feldberg, S.W., Nakadomar, H.: Charge-pulse studies of transport phenomena in bilayer membranes. II. Detailed theory of steady-state behavior and application to valinomycin-mediated potassium transport. J. Membr. Biol. 31, 81–102 (1977)PubMedGoogle Scholar
  53. Finkelstein, A.: Weak acid uncouplers of oxidative phosphorylation. Mechanism of action on thin-lipid membranes. Biochim. Biophys. Acta 205, 1–6 (1970)PubMedGoogle Scholar
  54. Finkelstein, A., Rubin, L.L., Tzeng, M.C.: Black widow spider venom: effect of purified toxin on lipid bilayer membranes. Science 193, 1009–1011 (1976)PubMedGoogle Scholar
  55. Foster, M., McLaughlin, S.: Complexes between uncouplers of oxidative phosphorylation. J. Membr. Biol. 17, 155–180 (1974)PubMedGoogle Scholar
  56. Foury, F., Boutry, M., Goffeau, A.: Efflux of potassium induced by Dio-9, a plasma membrane ATPase inhibitor in the yeast Schizosaccharomyces pombe. J. Biol. Chem. 13, 4577–4583 (1977)Google Scholar
  57. Gachon, P., Kergomard, A.: Grisorixin, an ionophorous antibiotic of the nigericin group. II. Chemical and structural study of grisorixin and some derivatives. J. Antibiot. 28, 345–350 (1975)PubMedGoogle Scholar
  58. Garty, H., Caplan, S.R.: Light-dependent rubidium transport in intact Halobacterium halobium cells. Biochim. Biophys. Acta 459, 532–545 (1977)PubMedGoogle Scholar
  59. Garty, H., Eisenbach, M., Shuldman, R., Caplan, S.R.: Light-induced pH changes in sub-bacterial particles of Halobacterium halobium; effects of ionophores. Biochim. Biophys. Acta 545, 365–376 (1979)PubMedGoogle Scholar
  60. Gatley, S.J., Sherrat, H.S.A.: The effects of diphenyleneiodonium on mitochondrial reactions. Relation of binding of diphenyleneiodonium [125-I] to mitochondria to the extent of inhibition of oxygen uptake. Biochem. J. 158, 307–315 (1976)PubMedGoogle Scholar
  61. Gäumann, E., Roth, S., Ettlinger, L., Plattner, P.A., Nager, U.: Enniatin, ein neues, gegen Mykobakterien wirksames Antibiotikum. Experimentia, 3, 202–203 (1947)Google Scholar
  62. Gibb, L.E., Eddy, A.A.: An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites tumor cells with reversed sodium ion concentration gradients. Biochem. J. 129, 979–981 (1972)PubMedGoogle Scholar
  63. Gisin, B.F., Kobayashi, S., Hall, J.E.: Synthesis of a 19-residue peptide with alamethicin-like activity. Proc. Natl. Acad. Sci. U.S.A. 74, 115–119 (1977)PubMedGoogle Scholar
  64. Gomez-Puyou, A., Gomez-Lojero, C.: The use of ionophores and channel formers in the study of the function of biological membranes. Curr. Topics Bioenerg. Sanadi, D.R. (ed), Vol. 8, pp. 221–257. New York, San Francisco, London: Academic Press 1977Google Scholar
  65. Gordon, L.G.M., Haydon, D.A.: The unit conductance channel of alamethicin. Biochim. Biophys. Acta 255, 1014–1018 (1972)PubMedGoogle Scholar
  66. Gordon, L.G.M., Haydon, D.A.: Kinetics and stability of alamethicin-conducting channels in lipid bilayers. Biochim. Biophys. Acta 436, 541–556 (1976)PubMedGoogle Scholar
  67. Gould, J.M., Cramer, W.A.: Studies on the depolarization of the Escherichia coli cell membrane by colicin El. J. Biol. Chem. 252, 5491–5497 (1977)PubMedGoogle Scholar
  68. Hall, J.E., Mead, C.A., Szabo, G.: A barrier model for current flow in lipid bilayer membranes. J. Membr. Biol. 11, 75–97 (1973)Google Scholar
  69. Hamill, R.L., Hoehn, M.M., Pittinger, G.E., Chamberlin, J., Gorman, M.: Dianemycin, an antibiotic of the group affecting ion transport. J. Antibiot. 22, 161–164 (1969)PubMedGoogle Scholar
  70. Haney, M.E., Hoehn, M.M.: Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob. Agents Chemother. 7, 349–352 (1967)PubMedGoogle Scholar
  71. Hanstein, W.G.: Uncoupling of oxidative phosphorylation. Biochim. Biophys. Acta 456, 129–148 (1976)PubMedGoogle Scholar
  72. Harned, R.L., Harter Hidy, P., Corum, C.J., Jones, K.L.: Nigericin, a new crystalline antibiotic from an unidentified Streptomyces. Antibiot. Chemother. 1, 594–596 (1951)Google Scholar
  73. Harold, F.M.: Antimicrobial agents and membrane function. Adv. Microb. Physiol. 4, 45–104 (1970)Google Scholar
  74. Harold, F.M.: Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36, 172–230 (1972)PubMedGoogle Scholar
  75. Harold, F.M., Baarda, J.R.: Gramicidin, valinomycin and cation permeability of Streptococcus faecalis. J. Bacteriol. 94, 53–60 (1967)PubMedGoogle Scholar
  76. Harold, F.M., Baarda, J.R.: Effects of nigericin and monactin on cation permeability of Streptococcus faecalis and metabolic capacities of potassium-depleted cells. J. Bacteriol. 95, 816–823 (1968 a)PubMedGoogle Scholar
  77. Harold, F.M., Baarda, J.R.: Inhibition of membrane transport in Streptococcus faecalis by uncouples of oxidative phosphorylation and its relationship to proton conduction. J. Bacteriol. 96, 2025–2034 (1968 b)PubMedGoogle Scholar
  78. Harold, F.M., Van Brunt, J.: Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science 197, 372–373 (1977)PubMedGoogle Scholar
  79. Harold, F.M., Altendorf, K.H., Hirata, H.: Probing membrane transport mechanisms with ionophores. Ann. N.Y. Acad. Sci 235, 149–160 (1974)PubMedGoogle Scholar
  80. Haydon, D.A., Hladky, S.B.: Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5, 187–282 (1972)PubMedGoogle Scholar
  81. Hazen, E.L., Brown, R.: Fungicidin, an antibiotic produced by a soil Actinomycete. Proc. Soc. Exp. Biol. Med. 76, 93–97 (1951)PubMedGoogle Scholar
  82. Henderson, P.J.F., McGivan, J.D., Chappell, J.B.: The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem. J. 111, 521–535 (1969)PubMedGoogle Scholar
  83. Heyer, E.J., Muller, R.U., Finkelstein, A.: Inactivation of monazomycin-induced, voltage-dependent conductance in thin lipid membranes. II. Inactivation produced by monazomycin transport through the membrane. J. Gen. Physiol. 67, 731–748 (1976)PubMedGoogle Scholar
  84. Hirata, H., Altendorf, K., Harold, F.M.: Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 70, 1804–1808 (1973)PubMedGoogle Scholar
  85. Hladky, S.B.: Tests of the carrier model for ion transport by nonactin and trinactin. Biochim. Biophys. Acta 375, 327–349 (1975)PubMedGoogle Scholar
  86. Hladky, S.B., Haydon, D.A.: Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature (London) 225, 451–453 (1970)Google Scholar
  87. Hladky, S.B., Haydon, D.A.: Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim. Biophys. Acta 274, 294–312 (1972)PubMedGoogle Scholar
  88. Höfer, M., Pressman, B.C.: Stimulation of oxidative phosphorylation in mitochondria by potassium in the presence of valinomycin. Biochemistry 5, 3919–3925 (1966)Google Scholar
  89. Holland, P.C., Sherrat, H.S.A.: Biochemical effects of the hypoglycaemic compound diphenyleneiodonium. Catalysis of anion-hydroxyl exchange across the inner membrane of rat-liver mitochondria and effects on oxygen uptake. Biochem. J. 129, 39–54 (1972)PubMedGoogle Scholar
  90. Holz, R.W.: The release of dopamine from synaptosomes from rat striatum by the ionophores X-537A and A 23187. Biochim. Biophys. Acta 375, 138–152 (1975)PubMedGoogle Scholar
  91. Holz, R., Finkelstein, A.: The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56, 125–145 (1970)PubMedGoogle Scholar
  92. Hopfer, U., Lehninger, A.L., Lennarz, W.J.: The effect of the polar moiety of lipids on bilayer conductance induced by uncouplers of oxidative phosphorylation. J. Membr. Biol. 3, 142–155 (1970)Google Scholar
  93. Hotchkiss, R.D., Dubos, R.J.: The isolation of bactericidal substances from cultures of Bacillus brevis. J. Biol. Chem. 141, 155–162 (1941).Google Scholar
  94. Hsu, M.C., Chan, S.I.: Nuclear magnetic resonance studies of the interaction of valinomycin with unsonicated lecithin bilayers. Biochemistry 12, 3872–3876 (1973)PubMedGoogle Scholar
  95. Hunter, F.E., Schwartz, L.S.: Valinomycin. In: Antibiotics. Gotlieb, D., Shaw, P.D. (eds.) Vol. 1, pp. 631–635. Berlin, Heidelberg, New York: Springer 1967aGoogle Scholar
  96. Hunter, F.E., Schwartz, L.S.: Tyrocidines and gramicidin S (J1, J2). In: Antibiotics. Gotlieb, D., Shaw, P.D. (eds.), Vol. 1, pp. 638–641. Berlin, Heidelberg, New York: Springer 1967bGoogle Scholar
  97. Hunter, F.E., Schwartz, L.S.: Gramicidins. In: Antibiotics. Gotlieb, D., Shaw, P.D. (eds.), Vol. 1, pp. 642–648. Berlin, Heidelberg, New York: Springer 1967cGoogle Scholar
  98. Hütter, R., Keller-Schierlein, W., Knüsel, F., Prelog, V., Rodgers, G.C., Suter, P., Vogel, G., Voser, W., Zähner, H.: Stoffwechselprodukte von Mikroorganismen. 57. Boromycin. Helv. Chim. Acta 50, 1533–1539 (1967)Google Scholar
  99. Hyono, A., Hendriks, Th., Daemen, F.J.M., Bonting, S.L.: Movement of calcium through artificial lipid membranes and the effect of ionophores. Biochim. Biophys. Acta 389, 34–46 (1975)PubMedGoogle Scholar
  100. Ivanov, V.T., Laine, I.A., Abdulaev, N.D., Senyavina. L.B., Popov, E.M., Ovchinnikov, Yu.A., Shemyakin, M.M.: The physicochemical basis of the functioning of biological membranes: The conformation of valinomycin and its K+ complex in solution. Biochem. Biophys. Res. Commun. 34, 803–811 (1969)PubMedGoogle Scholar
  101. Jackson, J.B., Crofts, A.R.: The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett. 4, 185–189 (1969)PubMedGoogle Scholar
  102. Johnson, S.M., Herrin, J., Liu, S.J., Paul, I.C.: The crystal and molecular structure of the barium salt of an antibiotic containing a high proportion of oxygen. J. Am. Chem. Soc. 92, 4428–4435 (1970)PubMedGoogle Scholar
  103. Jones, N.D., Chaney, M.O., Chamberlain, J.W., Hamill, R.L., Chen, S.: Structure of A204A, a new polyether antibiotic. J. Am. Chem. Soc. 95, 3399–3400 (1973)PubMedGoogle Scholar
  104. Jung, G., Koenig, W.A., Leibfritz, D., Ooka, T., Janko, K., Boheim, G.: Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. A: Sequence and conformation. Biochim. Biophys. Acta 433, 164–181 (1976)PubMedGoogle Scholar
  105. Kashket, E.R., Wilson, T.H.: Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. Natl. Acad. Sci. U.S.A. 70, 2866–2869 (1973)PubMedGoogle Scholar
  106. Katz, E., Demain, A.L.: The peptide antibiotics of bacillus: Chemistry, biogenesis and possible function. Bacteriol. Rev. 42, 449–474 (1977)Google Scholar
  107. Kennedy, S.J., Roeske, R.W., Freeman, A.R., Watanabe, A.M., Besch, H.R.: Synthetic peptides form ion channels in artificial lipid bilayer membranes. Science 196, 1341–1342 (1977)PubMedGoogle Scholar
  108. Kilbourn, B.T., Dunitz, J.D., Pioda, L.A., Simon, W.: Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties. J. Mol. Biol. 30, 559–563 (1967)PubMedGoogle Scholar
  109. Kinsky, S.C.: Polyene antibiotics. In: Antibiotics. Gotlieb, D., Shaw, P.D. (eds.), Vol. 1, pp. 122–141. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  110. Kinsky, S.C.: Antibiotic interaction with model membranes. Annu. Rev. Pharmacol. 10, 119–142 (1970)PubMedGoogle Scholar
  111. Krasne, S., Eisenman, G.: Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes. I. tetranactin and the methylation of nonactin-type carriers. J. Membr. Biol. 30, 1–44 (1976)PubMedGoogle Scholar
  112. Krasne, S., Eisenman, G., Szabo, G.: Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin. Science 174, 412–415 (1971)PubMedGoogle Scholar
  113. Lardy, H.A., Johnson, D., McMurray, W.C.: Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch. Biochem. Biophys. 78, 587–597 (1958)PubMedGoogle Scholar
  114. Latorre, R., Ehrenstein, G., Lecar, H.: Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes. J. Gen. Physiol. 60, 72–85 (1972)PubMedGoogle Scholar
  115. Lau, A.L.I., Chan, S.I.: Voltage-induced formation of alamethicin pores in lecithin-bilayer vesicles. Biochemistry 15, 2551–2555 (1976)PubMedGoogle Scholar
  116. Läuger, P.: Carrier-mediated ion transport. Science 178, 24–30 (1972)PubMedGoogle Scholar
  117. Läuger, P., Stark, G.: Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim. Biophys. Acta 211, 458–466 (1970)PubMedGoogle Scholar
  118. Lea, E.J.A., Croghan, P.C.: The effect of 2,4-dinitrophenol on the properties of thin phospholipid films. J. Membr. Biol. 1, 225–237 (1969)Google Scholar
  119. LeBlanc, O.H.: The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanide m-chlorophenylhydrazone. J. Membr. Biol. 4, 227–251 (1971)Google Scholar
  120. Lever, J.E.: Active amino acid transport in plasma membrane vesicles from simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake. J. Biol. Chem. 252, 1990–1997 (1977)PubMedGoogle Scholar
  121. Lubin, M., Ennis, H.L.: On the role of intracellular potassium in protein synthesis. Biochim. Biophys. Acta 80, 614–631 (1963)Google Scholar
  122. MacDonald, R.E., Lanyi, J.K.: Light-induced leucine transport in Halobacterium halobium envelope vesicles: A chemiosmotic system. Biochemistry 14, 2882–2889 (1975)PubMedGoogle Scholar
  123. Maloney, P.C.: Obligatory coupling between proton entry and the synthesis of adenine S′-triphosphate in Streptococcus lactis. J. Bacteriol. 132, 564–575 (1977)PubMedGoogle Scholar
  124. Markin, V.S., Sokolov, V.S., Boguslavsky, L.I., Jaguzhinski, L.S.: Nigericin-induced transfer across membranes. J. Membr. Biol. 25, 23–45 (1975)PubMedGoogle Scholar
  125. Martin, D.R., Williams, R.J.P.: Chemical nature and sequence of alamethicin. Biochem. J. 153, 181–190 (1976)PubMedGoogle Scholar
  126. Mauro, A., Nanavati, R.P., Heyer, E.: Time variant conductance of bilayer membranes treated with monazomycin and alamethicin. Proc. Natl. Acad. Sci. U.S.A. 69, 3742–3744 (1972)PubMedGoogle Scholar
  127. McLaughlin, S.: The mechanism of action of DNP on phospholipid bilayer membranes. J. Membr. Biol. 9, 361–372 (1972)PubMedGoogle Scholar
  128. McLaughlin, S.: Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Transp. 9, 71–144 (1977)Google Scholar
  129. McLaughlin, S., Eisenberg, M.: Antibiotics and membrane biology. Annu. Rev. Biophys. Bioeng. 4, 335–366 (1975)PubMedGoogle Scholar
  130. McLaughlin, S.G.A., Szabo, G., Eisenman, G.: Divalent ions and the surface potential of charged phospholipid membranes. J. Gen. Physiol. 58, 667–687 (1971)PubMedGoogle Scholar
  131. McLaughlin, S.G.A., Szabo, G., Ciani, S., Eisenman, G.: The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 9, 3–36 (1972)Google Scholar
  132. Meyer, C.E., Reusser, F.: A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia 23, 85–86 (1967)PubMedGoogle Scholar
  133. Meyers, E., Pansy, F.E., Perlman, D., Smith, D.A., Weisenborn, F.L.: The in vitro activity of nonactin and its homologs: monactin, dinactin and trinactin. J. Antibiot. A18, 128–129 (1965)Google Scholar
  134. Mitani, M., Yamanishi, T., Ebata, E., Otake, N., Koenuma, M.: Studies on ionophorous antibiotics VII. A broad selective ionophore, lysocellin. J. Antiobiot. 30, 186–189 (1977)Google Scholar
  135. Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191, 144–148 (1961)Google Scholar
  136. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445–502 (1966)PubMedGoogle Scholar
  137. Mitscher, L.A., Shay, A.J., Bohonos, N.: LL-A 491, a monazomycin-like antibiotic. Appl. Microbiol. 15, 1002–1005 (1967)PubMedGoogle Scholar
  138. Montal, M., Darszon, A., Trissl, H.W.: Transmembrane channel formation in rhodopsin-containing bilayer membranes. Nature (London) 267, 221–225 (1977).Google Scholar
  139. Moore, M.R.: Fusion of liposomes containing conductance probes with black lipid films. Biochim. Biophys. Acta 426, 765–771 (1976)PubMedGoogle Scholar
  140. Mueller, P., Rudin, D.O.: Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. Biophys. Res. Commun. 26, 398–404 (1967 a)PubMedGoogle Scholar
  141. Mueller, P., Rudin, D.O.: Action potential phenomena in experimental bimolecular lipid membranes. Nature (London) 213, 603–604 (1967 b)Google Scholar
  142. Mueller, P., Rudin, D.O.: Action potentials induced in bimolecular lipid membranes. Nature (London) 217, 713–719 (1968)Google Scholar
  143. Mueller, P., Rudin, D.O.: Translocators in bimolecular lipid membranes. Their role in dissipative and conservative bioenergy transduction. In: Curr. Top. Bioenerg. Sanadi, D.R. (ed.), Vol. 3, pp. 157–249. New York, London: Academic Press 1969Google Scholar
  144. Mukerjee, P.K., Paulus, H.: Biological function of gramicidin: studies on gramicidin-negative mutants. Proc. Natl. Acad. Sci. U.S.A. 74, 780–784 (1977)Google Scholar
  145. Muller, R.U., Finkelstein, A.: Voltage-dependent conductance induced in thin lipid membranes by monazomycin. J. Gen. Physiol. 60, 263–284 (1972)PubMedGoogle Scholar
  146. Murer, H., Hopfer, U.: Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc. Natl. Acad. Sci. U.S.A. 71, 484–488 (1974)PubMedGoogle Scholar
  147. Neupert-Lavas, K., Dobler, M.: The crystal structure of a K+ complex of valinomycin. Helv. Chim. Acta 58, 432–442 (1975)Google Scholar
  148. Nikaido, H.: Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim. Biophys. Acta 433, 118–132 (1976)PubMedGoogle Scholar
  149. Nordmann, J.J., Dyball, R.E.J.: A new calcium-mobilizing agent. Nature (London) 255, 414–415 (1975)Google Scholar
  150. Ovchinnikov, Yu.A., Ivanov, V.T., Evstratov, A.V., Bystrov, V.F., Abdullaev, N.D., Popov, E.M., Lipkind, G.M., Arkhipova, S.F., Efremov, E.S., Shemyakin, M.M.: The physicochemical basis of the functioning of biological membranes: Dynamic conformational properties of Enniatin B and its K+ complex in solution. Biochem. Biophys. Res. Commun. 37, 668–676 (1969)PubMedGoogle Scholar
  151. Ovchinnikov, Yu.A., Ivanov, V.T., Shkrob, A.M.: Membrane-active complexones, BBA Library 12. Amsterdam: Elsevier 1974Google Scholar
  152. Pache, W., Zähner, H.: Metabolic products of microorganisms. 77. Studies on the mechanism of action of boromycin. Arch. Mikrobiol. 67, 156–165 (1969)PubMedGoogle Scholar
  153. Patel, D.J., Tonelli, A.E.: Solvent-dependent conformations of valinomycin in solution. Biochemistry 12, 486–496 (1973)PubMedGoogle Scholar
  154. Payne, J.W., Jakes, R., Hartley, B.S.: The primary structure of alamethicin. Biochem. J. 117, 757–766 (1970)PubMedGoogle Scholar
  155. Pedersen, C.J.: Ionic complexes of macrocyclic polyethers. Fed. Proc. 27, 1305–1309 (1968)PubMedGoogle Scholar
  156. Pfeiffer, D.R., Lardy, H.A.: Ionophore A 23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A 23187. Biochemistry 15, 935–943 (1976)PubMedGoogle Scholar
  157. Pinkerton, M., Steinrauf, L.K., Dawkins, P.: The molecular structure and some transport properties of valinomycin. Biochem. Biophys. Res. Commun. 35, 512–518 (1969)PubMedGoogle Scholar
  158. Pressman, B.C.: Induced active transport of ions in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 53, 1076–1083 (1965)PubMedGoogle Scholar
  159. Pressman, B.C.: Ionophorous antibiotics as models for biological transport. Fed. Proc. 27, 1283–1288 (1968)PubMedGoogle Scholar
  160. Pressman, B.C.: Properties of ionophores with broad range cation selectivity. Fed. Proc. 32, 1698–1703 (1973)PubMedGoogle Scholar
  161. Pressman, B.C.: Biological applications of ionophores. Annu. Rev. Biochem. 45, 501–530 (1976)PubMedGoogle Scholar
  162. Pressman, B.C., Harris, E.J., Jagger, W.S., Johnson, J.H.: Antibiotic-mediated transport of alkaliions across lipid barriers. Proc. Natl. Acad. Sci. U.S.A., 58, 1949–1956 (1967)PubMedGoogle Scholar
  163. Racker, E., Hinkle, P.C.: Effect of temperature on the function of a proton pump. J. Membrane Biol. 17, 181–188 (1974)Google Scholar
  164. Reed, P.W., Lardy, H.A.: A 23187: A divalent cation ionophore. J. Biol. Chem. 247, 6970–6977 (1972)PubMedGoogle Scholar
  165. Rothman, J.E., Lenard, J.: Membrane Asymmetry. Science 195, 743–753 (1977)PubMedGoogle Scholar
  166. Rottenberg, H.: The mechanism of energy-dependent ion transport in mitochondria. J. Membr. Biol. 11, 117–137 (1973)PubMedGoogle Scholar
  167. Roy, G.: Properties of the conductance induced in lecithin bilayer membranes by alamethicin. J. Membr. Biol. 24, 71–85 (1975)PubMedGoogle Scholar
  168. Sarges, R., Witkop, B.: Gramicidin 8: The structure of valine and isoleucine gramicidin C. Biochemistry 4, 2491–2494 (1965)Google Scholar
  169. Schadt, M., Haeusler, G.: Permeability of lipid bilayer membranes to biogenic amines and cations: Changes induced by ionophores and correlations with biological activities. J. Membr. Biol. 18, 277–294 (1974)PubMedGoogle Scholar
  170. Schlieper, P.: Effect of angiotensin II on artificial lipid membranes. Biochim. Biophys. Acta 464, 448–452 (1977)PubMedGoogle Scholar
  171. Schönfeld, M., Neumann, J.: Proton conductance of the thylakoid membrane: modulation by light. FEBS Lett. 73, 51–54 (1977)PubMedGoogle Scholar
  172. Schumard, R.F., Callender, M.E. (1968). Monensin, a new biologically active compound VI: Anticoccidial activity. Antimicrob. Agents Chemother, 369–377 (1967)Google Scholar
  173. Shavit, N., San Pietro, A.: K +-dependent uncoupling of photophosphorylation by nigericin. Biochem. Biophys. Res. Commun. 28, 277–283 (1967)PubMedGoogle Scholar
  174. Shaw, P.D.: Nigericin. In: Antibiotics. Gotlieb, D., Shaw, P.D. (eds.), Vol. I, pp. 613–616. New York, Heidelberg, Berlin: Springer 1967aGoogle Scholar
  175. Shaw, P.D.: Nonactin and related antibiotics. In: Antibiotics. Gotlieb, D., Shaw, P.D. (eds.), Vol. I, pp. 649–650 Berlin-Heidelberg-New York: Springer 1967bGoogle Scholar
  176. Shemyakin, M.M., Ovchinmikov, Yu.A., Ivanov, V.T., Kiryushkin, A.A., Zhdanov, G.L., Ryabova, I.D.: The structure-antimicrobial relation of depsipeptides. Experientia 19, 566–568 (1963 a)Google Scholar
  177. Shemyakin, M.M., Aldanova, N.A., Vinogradova, E.I.: Feigina, M.Yu.: The structure and total synthesis of valinomycin. Tetrahedon Lett. 28, 1921–1925 (1963 b)Google Scholar
  178. Shemyakin, M.M., Vinogradova, E.I., Feigina, M.Yu., Aldanova, N.A., Loginova, N.F., Ryabova, I.D., Pavlenko, I.A.: The structure-antimicrobial relation for valinomycin depsipeptides. Experientia 21, 548–552 (1965)PubMedGoogle Scholar
  179. Shen, C., Patel, D.J.: Biogenic amine-ionophore interactions: Structure and dynamics of Lasalocid (X-537A) complexes with phenetylamines and catecholamines in nonpolar solvents. Proc. Natl. Acad. Sci. U.S.A. 74, 4734–4738 (1977)PubMedGoogle Scholar
  180. Sims, P.J., Waggoner, A.S., Wang, C.H., Hoffman, J.F.: Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13, 3315–3330 (1974)PubMedGoogle Scholar
  181. Singer, S.J.: The molecular organization of membranes. Annu. Rev. Biochem. 805–833 (1974)Google Scholar
  182. Singer, S.J., Nicholson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)PubMedGoogle Scholar
  183. Stark, G., Ketterer, B., Benz, R., Läuger, P.: The rate constants of valinomycin-mediated ion transport through thin lipid bilayers. Biophys. J. 11, 981–994 (1971)PubMedGoogle Scholar
  184. Steinrauf, L.K., Czerwinski, E.W., Pinkerton, M.: Comparison of the monovalent cation complexes of monensin, nigericin and dianemycin. Biochem. Biophys. Res. Commun. 45, 1279–1283 (1971)PubMedGoogle Scholar
  185. Szabo, G., Eisenman, G., Ciani, S.: The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1, 346–382 (1969)Google Scholar
  186. Terada, H.: Some biochemical and physicochemical properties of the potent uncoupler SF 6847 3,5,-di- tert-butyl-4-hydroxybenzylidenemalononitrile). Biochim. Biophys. Acta 387, 519–532 (1975)PubMedGoogle Scholar
  187. Toro, M., Gomez-Lojero, C., Montai, M., Estrada-O, S.: Charge transfer mediated by nigericin in black lipid membranes. J. Bioenerg. 8, 19–26 (1976)PubMedGoogle Scholar
  188. Tosteson, D.C., Andreoli, T.E., Tieffenberg, M., Cook, P.: The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J. Gen. Physiol. 51, 373S (1968)PubMedGoogle Scholar
  189. Urry, D.W.: Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions. Biochim. Biophys. Acta 265, 115–168 (1972)PubMedGoogle Scholar
  190. Urry, D.W., Goodall, M.C., Glickson, J.S., Mayers, D.F.: The gramicidin A transmembrane channel: Characteristics of head to head dimerized π (L, D) helixes. Proc. Natl. Acad. Sci. U.S.A. 68, 1907–1911 (1971)PubMedGoogle Scholar
  191. Veatch, W.R., Fossel, E.T., Blout, E.K.: The conformation of gramicidin A. Biochemistry 13, 5249–5256 (1974)PubMedGoogle Scholar
  192. Veatch, W.R., Mathies, R., Eisenberg, M., Stryer, L.: Simultaneous fluorescence and conductance studies of planer bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J. Mol. Biol. 99, 75–92 (1975)PubMedGoogle Scholar
  193. Vuilleumier, P., Gazzatti, P., Carafoli, E., Simon, W.: The translocation of Ca+ + across phospholipid bilayers induced by a synthetic neutral Ca+ + ionophore. Biochim. Biophys. Acta 467, 12–18 (1977)PubMedGoogle Scholar
  194. Wanke, E., Prestipino, G.: Monazomycin channel noise. Biochim. Biophys. Acta 436, 721–726 (1976)PubMedGoogle Scholar
  195. Weidekamm, E., Bamberg, E., Brdiczka, D., Wildermuth, G., Macco, F., Lehmann, W., Weber, R.: Raman spectroscopic investigation of the interaction of gramicidin A with dipalmitoyl phosphatidylcholine liposomes. Biochim. Biophys. Acta 464, 442–447 (1977)PubMedGoogle Scholar
  196. Weinberg, E.G.: Secondary metabolism: raison d’âtre, Perspect. Biol. Med. 14, 565–577 (1971)Google Scholar
  197. Wong, D.T.: Complexation of ammonium ions by the polyether monocarboxylic acid ionophore A 23187. FEBS Lett. 71, 175–177 (1976)Google Scholar
  198. Worley, R.T.S., Rich, G.T., Pryor, J.S.: Effect of calcium ionophore Br-X-537A on renin synthesis and release in amphiuma means kidney culture. Nature (London) 271, 174–176 (1978)Google Scholar
  199. Wulf, J., Pohl, W.G.: Calcium ion flux across phosphatidylcholine membranes mediated by ionophore A 23187. Biochem. Biophys. Acta 465, 471–485 (1977)PubMedGoogle Scholar
  200. Wun, T.C., Bitman, R.: Ionophorous properties of neutral diamide ligands towards calcium. Biochemistry 16, 2080–2086 (1977)PubMedGoogle Scholar
  201. Wun, T.C., Bittman, T., Borowitz, I.J.: Binding properties of neutral diamide ligands for alkaline-earth cations. Biochemistry 16, 2074–2079 (1977)PubMedGoogle Scholar
  202. Zickler, A., Witt, H.T., Boheim, G.: Estimation of the light-induced electrical potential at the functional membrane of photosynthesis a using voltage-dependent ionophore. FEBS Lett. 66, 142–148 (1976)Google Scholar
  203. Zieniawa, T., Popinigis, J., Wozniak, M., Cybulska, B., Borowski, E.: Ionophore-like action of lienomycin on energized membrane of rat-liver mitochondria. FEBS Lett. 76, 81–85 (1977)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • E. P. Bakker

There are no affiliations available

Personalised recommendations