• O. Pongs
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 1)


Chloramphenicol is a broad-spectrum antibiotic which acts chiefly as a bacteriostatic agent. Chloramphenicol was isolated in 1947 from Streptomyces venezuelae. Soon afterwards, its structure was elucidated and it became the first antibiotic to be synthesized by chemical means (Controulis et al., 1949). The chemical structure of chloramphenicol is given in Fig. 1. It is one of the rare natural compounds which carry a nitro group. Nevertheless, the molecule has a structure which is one of the simplest of the known antibiotics (Rebstock etal., 1949; Dunitz, 1952). Subsequently, a large number of chloramphenicol derivatives was prepared, which exceeds more than 500 compounds (Kolosov et al., 1961). The molecule of chloramphenicol (Fig. 1) is composed of three parts: (I) a p-nitrobenzene moiety, (II) a dichloracetyl moiety, and (III) a 2-amino-propanediol moiety. In more general terms, part I represents an aromatic ring system and part II an aliphatic haloacetyl side-chain. The propanediol moiety possesses two asymmetric carbon atoms (indicated by an asterix in Fig. 1). Accordingly, four stereoisomers of chloramphenicol theoretically exist. The Newman projections of these four stereoisomers are depicted in Fig. 2. Two of these, the D-threo and the L-threo enantiomers, carry the amide side-chain (part II) and the hydroxyl on carbon 1 on opposite sides of the plane of the two asymmetric centers (Fig. 2C and D). The other two stereoisomers, the D-erythro and L-erythro enantiomers, carry the two substituents on the same side of the plane of the two asymmetric centers (Fig. 2 A and B).


Peptide Bond Formation Amino Acid Incorporation Peptidyl Transferase Asymmetric Carbon Atom Affinity Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apirion, D., Schlessinger, D.: Mapping and complementation of three genes. Specifying 30S ribosomal components in Escherichia Coli. J. Bacteriol. 96, 1431–1432 (1968)PubMedGoogle Scholar
  2. Aronson, A.I., Spiegelman, S.: Protein and ribonucleic acid synthesis in a chloramphenicol-inhibited system. Biochim. Biophys. Acta 53, 70–84 (1961)PubMedCrossRefGoogle Scholar
  3. Bald, R., Erdmann, V.A., Pongs, O.: Irreversible binding of chloramphenicol analogues to E. coli ribosomes. FEBS-Lett. 28, 149–152 (1972)PubMedCrossRefGoogle Scholar
  4. Borsock, H., Fischer, E.H., Keighley, G.: Factors affecting protein synthesis in vitro in rabbit reticulocytes. J. Biol. Chem. 299, 1059–1070 (1957)Google Scholar
  5. Bustard, T.M., Egan, R.S., Perun, T.J.: Conformational studies on chloramphenicol and related molecules. Tetrahedron 29, 1961–1967 (1973)CrossRefGoogle Scholar
  6. Cannon, M.: The puromycin Reaction and its inhibition by chloramphenicol. Eur. J. Biochem. 7, 137–145 (1968)PubMedCrossRefGoogle Scholar
  7. Cerna, J., Rychlik, I.: Cross resistance of Escherichia coli B ribosomes to inhibition of the puromycin reaction by erythromycin, spiramycin and chloramphenicol. Biochim. Biophys. Acta 157, 436–438 (1968)PubMedGoogle Scholar
  8. Contreras, A., Barbacid, M., Vazquez, D.: Binding to ribosomes and mode of action of chloramphenicol analogues. Biochim. Biophys. Acta 349, 376–388 (1974)PubMedGoogle Scholar
  9. Controulis, M., Rebstock, M.C., Crooks, H.M.: Chloramphenicol (Chloromycetin). J. Am. Chem. Soc. 71, 2463–2468 (1949)CrossRefGoogle Scholar
  10. Coutsogeorgopoulos : On the mechanism of action of chloramphenicol in protein synthesis. Biochim. Biophys. Acta 129, 214–217 (1966)PubMedGoogle Scholar
  11. Coutsogeorgopoulos: Inhibitors of the reaction between puromycin and polylysyl-RNA in the presence of ribosomes. Biochem. Biophys. Res. Commun. 27, 46–52 (1967)PubMedCrossRefGoogle Scholar
  12. Cundliffe, E., McQuillen, K.: Bacterial protein synthesis: The effects of antibiotics. J. Mol. Biol. 30, 137–146 (1967)PubMedCrossRefGoogle Scholar
  13. Czernilofsky, A.P., Collatz, E.E., Stöffler, G., Kuechler, E.: Proteins at the t-RNA binding sites of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 71, 230–234 (1974)PubMedCrossRefGoogle Scholar
  14. Dunitz, J.D.: The crystal structure of chloramphenicol and bromamphenicol. J. Am. Chem. Soc. 74, 995–999 (1952)CrossRefGoogle Scholar
  15. Ehrenstein, G. von, Lipmann, F.: Experiments on hemoglobin biosynthesis. Proc. Natl. Acad. Sci. USA 47, 941–950 (1961)CrossRefGoogle Scholar
  16. Eilat, D., Pellegrini, M., Oen, H., Lapidot, Y., Cantor, C.R.: A chemical mapping technique for exploring the location of proteins along the ribosome-bound peptide chain. J. Mol. Biol. 88, 831–840 (1974)PubMedCrossRefGoogle Scholar
  17. Ellis, R.J.: Chloroplast ribosomes : Stereospecificity of inhibition by chloramphenicol. Science 163, 477–478 (1969)PubMedCrossRefGoogle Scholar
  18. Farkas, I., Sicher, J.: The chloramphenicol series. V. analogs containing chlorine in the side chain and oxazolines. Chem. Listy 47, 552–556 (1953)Google Scholar
  19. Fernandez-Munoz, R., Monro, R.E., Torres-Pinedo, R., Vazquez, D.: Substrate- and antibiotic binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Eur. J. Biochem. 23, 185–193 (1971)PubMedCrossRefGoogle Scholar
  20. Freeman, K.B.: Inhibition of Mitochondrial and bacterial Protein synthesis by chloramphenicol. Can. J. Biochem. 48, 479–485 (1970)PubMedCrossRefGoogle Scholar
  21. Gale, E.F., Folkes, J.P.: The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus Aureus. Biochem. J. 53, 493–498 (1953)PubMedGoogle Scholar
  22. Gardner, R.S., Wahba, A.J., Basilio, C., Miller, R.S., Lengyel, P., Speyer, J.F.: Synthetic polynucleotides and the amino acid code. Proc. Natl. Acad. Sci. USA 48, 2087–2094 (1962)PubMedCrossRefGoogle Scholar
  23. Hahn, F.E.: Relationship between the structure of chloramphenicol and its action upon peptide synthetase. Experientia 24, 856–864 (1968)PubMedCrossRefGoogle Scholar
  24. Hahn, F.E., Gund, P.: A structural model of the chloramphenicol receptor site. In: Drug Receptor Interactions in Antimicrobial Chemotherapy. Drews J., Hahn, F.E. (eds.), Vol. 1, pp. 245–266. Wien, New York: Springer 1975Google Scholar
  25. Hahn, F.E., Wisseman, C.L.: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exp. Biol. Med. 76, 533–535 (1951)PubMedGoogle Scholar
  26. Hahn, F.E., Hayes, J.E., Wisseman, C.L., Hopps, H.E., Smadel, J.E.: Mode of action of chloramphenicol. VI. Relation between structure and activity in the chloramphenicol series. Antibiot. Chemother. 6, 531–543 (1956)Google Scholar
  27. Hansch, C., Nakamoto, K., Gorim, P., Denisevich, E.R., Garrett, S.M., Heman-Ackah, Von, C.H.: Structure-activity relationship of Chloramphenicols. J. Med. Chem. 16, 917–923 (1973)PubMedCrossRefGoogle Scholar
  28. Jardetzky, O.: Studies on the mechanism of action of chloramphenicol. I. The conformation of chloramphenicol in solution. J. Biol. Chem. 238, 2498–2508 (1963)Google Scholar
  29. Jardetzky, O., Julian, G.R.: Chloramphenicol inhibition of polyuridylic acid binding to E. coli ribosomes. Nature (London) 201, 397–398 (1964)CrossRefGoogle Scholar
  30. Kolosov, M.N., Shemiakin, M.M., Khoklov, A.S., Gurevich, A.I.: Chloramphenicol. In: Khimia Antibiotikow I. USSR: Iedetsto Akademii Navk 1961Google Scholar
  31. Kono, M., O’Hara, K., Nagawa, M., Mitsuhashi, S.: Drug Resistance of Staphylococci. XI. Induction of chloramphenicol resistance by its derivatives and analogues. Japan. J. Microbiol. 15, 219–227 (1971)Google Scholar
  32. Kroon, A.M.: Protein Synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beef-heart mitochondria and fractions derived from them by sonic oscillation. Biochim. Biophys. Acta 72, 391–402 (1963)PubMedCrossRefGoogle Scholar
  33. Kucan, Z., Lipmann, F.: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. Biol. Chem. 239, 516–520 (1964)PubMedGoogle Scholar
  34. Lamborg, M.R., Zamecnik, P.C.: Amino acid incorporation into protein by extracts of E. coli. Biochim. Biophys. Acta 42, 206–211 (1960)PubMedCrossRefGoogle Scholar
  35. Lark, K.G., Lark, C.: Protein required for initiation of DNA Replication. J. Mol. Biol. 20, 9–19 (1966)PubMedCrossRefGoogle Scholar
  36. Lessard, J.L., Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIII. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes. J. Biol. Chem. 247, 6909–6912 (1972)PubMedGoogle Scholar
  37. Long, L.M., Troutman, H.D.: Chloromycetin. Synthesis of alphadichloracetamido-beta-hydroxy-p-nitropropiophenone. J. Am. Chem. Soc. 73, 481–482 (1951)CrossRefGoogle Scholar
  38. Maxwell, R.E., Nickel, V.S.: The antibacterial activity of the isomers of chloramphenicol. Antibiot. Chemother. 4, 289–295 (1954)Google Scholar
  39. Monro, R.E.: The peptidyl transferase activity of ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34, 357–368 (1969)Google Scholar
  40. Nathans, D., Lipmann, F.: Amino acid transfer from aminoacylribonucleic acids to protein on ribosomes of Escherichia coli. Proc. Natl. Acad. Sci. USA 47, 497–502 (1961)PubMedCrossRefGoogle Scholar
  41. Nierhaus, D., Nierhaus, K.H.: Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstruction. Proc. Natl. Acad. Sci. USA 70, 2224–2228 (1973)PubMedCrossRefGoogle Scholar
  42. Nirenberg, M.W., Matthaei, J.N.: The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 47, 1588–1602 (1961)PubMedCrossRefGoogle Scholar
  43. Oen, H., Pellegrini, M., Eilat, D., Cantor, C.R.: Identification of 50S proteins at the peptidyl-tRNA binding site of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 70, 2799–2803 (1973)PubMedCrossRefGoogle Scholar
  44. Okamoto, S., Suzuki, Y.: Chloramphenicol-, Dihydrostreptomycin-, and Kanamycin-Inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome ‘R’ Nature (London) 208, 1301–1303 (1965)CrossRefGoogle Scholar
  45. Osawa, S., Takata, R., Tanoka, K., Tamaki, M.: Chloramphenicol resistant mutants of Bacillus subtilis. Mol. Gen. Genet. 127, 163–173 (1973)PubMedCrossRefGoogle Scholar
  46. Pellegrini, M., Oen, H., Eilat, D., Cantor, C.R.: The mechanism of covalent reaction of bromacetyl-phenylalanyl-transfer RNA with the peptidyl-transfer RNA binding site of the Escherichia coli ribosome. J. Mol. Biol. 88, 809–829 (1974)PubMedCrossRefGoogle Scholar
  47. Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. J. Biol. Chem. 244, 1533–1539 (1969)PubMedGoogle Scholar
  48. Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. VIII. Survey of the effects of antibiotics on N-acetyl-phenylalanyl-puromycin formation: Possible mechanism of chloramphenicol action. Arch. Biochem. Biophys. 136, 80–88 (1970)PubMedCrossRefGoogle Scholar
  49. Pestka, S.: Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effects of antibiotics on peptidyl Puromycin synthesis on Polyribosomes from Escherichia coli. J. Biol. Chem. 247, 4669–4678 (1972)PubMedGoogle Scholar
  50. Pestka, S.: Inhibitors of Protein Synthesis. In: Molecular mechanisms of protein biosynthesis. Weissbach, H., Pestka, S. (eds.), 468 pp. New York: Academic Press 1977Google Scholar
  51. Peterson, R.F., Cohen, P.S., Ennis, H.L.: Properties of phage T4 messenger RNA synthesized in the absence of protein synthesis. Virology 48, 201–206 (1972)PubMedCrossRefGoogle Scholar
  52. Pongs, O.: The receptor site for chloramphenicol in vitro and in vivo. In: Drug action at the molecular level. 190 pp. London: MacMillan Press 1977Google Scholar
  53. Pongs, O., Messer, W.: The chloramphenicol receptorsite in Escherichia coli. In vivo affinity labeling by monoiodoamphenicol. J. Mol. Biol. 101, 171–184 (1976)PubMedCrossRefGoogle Scholar
  54. Pongs, O., Bald, R., Erdmann, V.A.: Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling. Proc. Natl. Acad. Sci. USA 70, 2229–2233 (1973)PubMedCrossRefGoogle Scholar
  55. Pongs, O., Nierhaus, K.H., Erdmann, V.A., Wittmann, H.G.: Active sites in Escherichia coli ribosomes. FEBS-Lett. Suppl. 40, 28–37 (1974)CrossRefGoogle Scholar
  56. Pongs, O., Bald, R., Erdmann, V.A., Reinwald, E.: In “Topics in Infectious Diseases. Drug Receptor Interactions in Antimicrobial Chemotherapy” (J. Drews a. F.E. Hahn, eds.). Vol. 1, 179–190. Wien, New York: Springer 1975Google Scholar
  57. Rebstock, M.C., Crooks, H.M., Controulis, J., Bartz, Q.R.: Chloramphenicol (Chloromycetin). J. Am. Chem. Soc. 71, 2458–2462 (1949)CrossRefGoogle Scholar
  58. Rebstock, M.C., Stratton, C.D., Bambas, L.L.: Some compounds related to Chloromycetin. J. Am.Chem. Soc. 77, 24–26 (1955)CrossRefGoogle Scholar
  59. Rendi, R.: The effect of chloramphenicol on the incorporation of labeled amino acids into proteins by isolated subcellular fractions from rat liver. Expt. Cell. Res. 18, 187–189 (1959)CrossRefGoogle Scholar
  60. Rendi, R., Ochoa, S.: Effect of chloramphenicol on protein synthesis in cell-free preparations of Escherichia coli. J. Biol. Chem. 237, 3711–3713 (1962)PubMedGoogle Scholar
  61. Shaw, W.V.: The enzymatic acetylation of chloramphenicol by R-factor resistant Escherichia coli. J. Biol. Chem. 242, 687–693 (1967)PubMedGoogle Scholar
  62. Shemiakin, M.M., Kolosov, M.N., Levitov, M.M., Germanova, K.I., Karpetian, M.G., Svetsov, I., Bamdes, E.M.: Researches into the chemistry of Chloromycetin (Levomycetin). VIII. Dependency of antimicrobial activity of Chloromycetin on its structure and the mechanism of effect of Chloromycetin. Zh. Obsch. Khim. 26, 773–785 (1956)Google Scholar
  63. Sinsheimer, R.L., Starman, B., Nagler, C., Guthrie, S.: The process of infection with bacteriophage φX174. I. Evidence for a “replicative form”. J. Mol. Biol. 4, 142–160 (1962)PubMedCrossRefGoogle Scholar
  64. Sinsheimer, R.L., Hutchinson, C.A., Lindquist, B.: In: The Molecular Biology of Viruses. Colter, S.J., Poranchych, W. (eds.), 175 pp. New York: Academic Press 1967Google Scholar
  65. So, A.G., Davie, E.W.: The incorporation of amino acids into protein in a cell-free system from yeast. Biochemistry 2, 132–136 (1963)PubMedCrossRefGoogle Scholar
  66. Sonnenberg, N., Wilchek, M., Zamir, A.: Mapping of Escherichia coli ribosomal components involved in peptidyl transferase activity. Proc. Natl. Acad. Sci. USA 70, 1423–1426 (1973)CrossRefGoogle Scholar
  67. Speyer, J.F., Lengyel, P., Basilio, C., Wahba, A.J., Gardner, R.S., Ochoa, S.: Synthetic polynucleotides and the amino acid code. Cold Spring Harbor Symp. Quant. Biol. 28, 559–568 (1963)Google Scholar
  68. Suzuki, Y., Okamoto, S.: The enzymatic acetylation of chloramphenicol by the multiple drug-resistant Escherichia coli carrying R-Faktor. J. Biol. Chem. 242, 4722–4730 (1967)PubMedGoogle Scholar
  69. Tanaka, K., Teraoka, H., Nagira, T., Tamaki, M.: [14C] erythromycin-ribosome complex formation and non-enzymatic binding of aminoacyl-transfer RNA to ribosome-messenger RNA complex. Biochim. Biophys. Acta 123, 435–437 (1966)PubMedGoogle Scholar
  70. Taubman, S.B., Jones, N.R., Young, F.E., Coreoran, J.W.: Sensitivity and resistance to erythromycin in bacillus subtilis 168: The ribosomal binding of erythromycin and chloramphenicol. Biochim. Biophys. Acta 123, 438–440 (1966)PubMedGoogle Scholar
  71. Telesnina, G.N., Novikova, M.A., Zhdanov, G.L., Kolosov, M.N., Shemiakin, M.M.: The effect of chloramphenicol analogs on protein biosynthesis in a cell-free Escherichia coli B system. Experimenta 23, 427–433 (1967)CrossRefGoogle Scholar
  72. Tessman, E.S.: Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J. Mol. Biol. 17, 218–236 (1966)PubMedCrossRefGoogle Scholar
  73. Vázquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Res. Comm. 15, 464–468 (1964)PubMedCrossRefGoogle Scholar
  74. Vázquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. Biophys. Acta 114, 277–288 (1965)Google Scholar
  75. Vázquez, D.: Ribosomal sites involved in binding of aminoacyl-t-RNA. Life Sci. 6, 845–853 (1967)PubMedCrossRefGoogle Scholar
  76. Vázquez, D.: Inhibitors of protein synthesis. FEBS Lett. 40, 63–72 (1974)CrossRefGoogle Scholar
  77. Weber, H.J.: Stoichiometric measurements of 30S and 50S ribosomal proteins from Escherichia coli. Mol. Gen. Genet. 119, 233–248 (1972)PubMedCrossRefGoogle Scholar
  78. Wintersberger, E.: Proteinsynthese in isolierten Hefe-Mitochondrien. Biochem. Z. 341, 409–419 (1965)Google Scholar
  79. Wisseman, C.L., Smodel, J.E., Hahn, F.E., Hoppe, H.E.: Mode of action of chloramphenicol. I. Action of Chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J. Bacteriol. 67, 662–673 (1954)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • O. Pongs

There are no affiliations available

Personalised recommendations