• D. R. Storm
  • W. A. ToscanoJr.
Part of the Antibiotics book series (ANTIBIOTICS, volume 5 / 1)


Since their discovery in 1945 (Johnson et al., 1945), the bacitracin peptides have been extensively studied by microbiologists, biochemists, and chemists. Although the major effort has been directed toward elucidation of the mechanism for the antimicrobial activity of bacitracins, the peptides have also served as useful tools for studying various biochemical processes and the chemistry of lipid peptide interactions. The primary goal of this article is to review the literature concerning the mechanism of action of bacitracin. Although this problem has been studied for over twenty years, the mechanism for bacitracin’s biological activities has not been unambiguously defined. Indeed, the bacitracins apparently affect a number of biochemical processes and it is not clear that the peptides inhibit bacterial growth by virtue of a single effect on bacterial metabolism. The timing of this review was dictated by the rapid proliferation of research in this area, and the existence of several different proposals in the literature for the mechanism of action of bacitracin.


Divalent Cation Bacillus Licheniformis Antibiotic Activity Farnesyl Pyrophosphate Spore Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, E.P.: Biochemistry of some peptide and sterol antibiotics, pp. 69–73. New York: John Wiley and Sons 1957Google Scholar
  2. Abraham, E.P., Newton, G.G.F.: Structure and function of some sulfur-containing peptides. Ciba Found. Symp. Amino Acids Peptides Antimetab, pp. 205–225 (1958)Google Scholar
  3. Adler, R.H., Snoke, J.E.: Requirement of divalent metal ions for bacitracin activity. J. Bacteriol. 83, 1315–1317 (1962)PubMedGoogle Scholar
  4. Bernlohr, R.W., Novelli, G.D.: Some characteristics of bacitracin production by Bacillus licheniformis. Arch. Biochem. Biophys. 87, 232–238 (1960)CrossRefGoogle Scholar
  5. Brown, M.R.W., Richards, R.M.E.: Effect of EDTA on the resistance of Pseudomonas aeruginosa to antibacterial agents. Nature (London) 207, 1391–1393 (1965)CrossRefGoogle Scholar
  6. Cornell, N.W., Guiney, D.G.: Binding sites for zinc (II) in bacitracin. Biochem. Biophys. Res. Commun. 40, 530–536 (1970)PubMedCrossRefGoogle Scholar
  7. Craig, L.C., Weisiger, J.R., Hausman, W., Harfenist, E.J.: The separation and characterization of bacitracin polypeptides. J. Biol. Chem. 199, 259–266 (1952)PubMedGoogle Scholar
  8. Craig, L.C., Phillips, W.F., Burachik, M.: Bacitracin A. Isolation by counter-current distribution and characterization. Biochemistry 8, 2348–2356 (1969)PubMedCrossRefGoogle Scholar
  9. Crawford, K., Abraham, E.P.: The synergistic action of cephalosporin C and benzyl-penicillin against a penicillinase-producing strain of Staphylococcus aureus. J. Gen. Microbiol. 16, 604–613 (1957)PubMedGoogle Scholar
  10. Creaser, E.H.: The induced biosynthesis of β-galactosidase in Staphylococcus aureus. J. Gen. Microbiol. 12, 288–297 (1955)PubMedGoogle Scholar
  11. Froyshov, O.: Enzyme-bound intermediates in the biosynthesis of bacitracin. Eur. J. Biochem. 59, 201–206 (1975)PubMedCrossRefGoogle Scholar
  12. Froyshov, O., Laland, S.G.: On the biosynthesis of bacitracin by a soluble enzyme complex from B. licheniformis. Eur. J. Biochem. 42, 235–242 (1974)CrossRefGoogle Scholar
  13. Galardy, R.E., Printz, M.P., Craig, L.C.: Tritium-hydrogen exchange of bacitracin A. Evidence for an intramolecular hydrogen bond. Biochemistry, 10, 2429–2436 (1971)PubMedCrossRefGoogle Scholar
  14. Gale, E.F., Folkes, J.P.: The assimilation of amino acids by bacteria. Biochem. J. 59, 675–684 (1955)PubMedGoogle Scholar
  15. Garbutt, J.T., Morehouse, A.L., Hanson, A.M.: Metal Binding properties of bacitracin. Agric. Food Chem. 9, 285–289 (1961)CrossRefGoogle Scholar
  16. Haavik, H.I.: Formation of bacitracin by Bacillus licheniformis, effect of glucose. J. Gen. Microbiol. 81, 383–390 (1974)PubMedGoogle Scholar
  17. Haavik, H.I.: Effect of bacitracin and manganese (II) ions upon the producer strain Bacillus licheniformis. Acta Pathol. Microbiol. Scand. 83 B, 513–518 (1975)Google Scholar
  18. Haavik, H.I.: On the role of bacitracin peptides in trace metal transport by Bacillus licheniformis. J. Gen. Microbiol. 96, 393–399 (1976)PubMedGoogle Scholar
  19. Haavik, H.I., Froyshov, O.: Function of peptide antibiotics in producer organisms. Nature (London) 254, 79–82 (1975)CrossRefGoogle Scholar
  20. Hancock, R., Fitz-James, P.C.: Some differences in the action of penicillin, bacitracin, and vancomycin on B. megaterium. J. Bacteriol. 87, 1044–1050 (1964)PubMedGoogle Scholar
  21. Ishihara, H., Shimura, K.: Biosynthesis of bacitracins. Biochem. Biophys. Acta 338, 588–600 (1974)CrossRefGoogle Scholar
  22. Jawetz, E.: Polymyxins, Colistin, bacitracin, ristocetin, and vancomycin. In: Antimicrob. Ther. Kagan, B. (ed.), p. 91. Phil. Pa.: Benjamin N. Saunders 1970Google Scholar
  23. Johnson, B.A., Anker, H., Meieney, F.L.: Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science 102, 376–377 (1945)PubMedCrossRefGoogle Scholar
  24. Konigsberg, W., Craig, L.C.: Cellulose ion exchange and rotatory dispersion studies with the bacitracin polypeptides. J. Am. Chem. Soc. 81, 3452–3458 (1959)CrossRefGoogle Scholar
  25. LaPorte, D., Rosenthal, K.S., Storm, D.R.: Inhibition of E. coli growth and respiration by polymyxin covalently attached to agarose. Biochemistry 16, 1642–1648 (1977)PubMedCrossRefGoogle Scholar
  26. Leive, L.: The barrier function of the gram-negative envelope. Ann. N.Y. Acad. Sci. 235, 109–129 (1974)PubMedCrossRefGoogle Scholar
  27. Lyerla, J.R., Freedman, M.H.: Spectral assignment and conformational analysis of cyclic peptides by carbon-13 NMR. J. Biol. Chem. 247, 8183–8192 (1972)PubMedGoogle Scholar
  28. MacDonald, R.I., MacDonald, R.C., Cornell, N.W.: Perturbation of liposomal and planar lipid bilayer membranes by bacitracin. Biochemistry 13, 4018–4024 (1974)PubMedCrossRefGoogle Scholar
  29. Mandelstam, J., Rogers, H.J.: The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antobiotics on the process. Biochem. J. 72, 654–662 (1959)PubMedGoogle Scholar
  30. Marschke, C.K., Bernlohr, R.W.: Reevalution of bacitracin as a spore coat component. J. Bacteriol. 102, 283–284 (1970)PubMedGoogle Scholar
  31. Mescher, M.F., Strominger, J.L.: Bacitracin induces sphere formation in halobacterium species which lack a wall peptidoglycan. J. Gen. Microb. 89, 375–378 (1975)Google Scholar
  32. Mescher, M.F., Strominger, J.L., Watson, S.W.: Protein and corbohydrate composition of the cell envelope of Halobacterium salinarium. J. Bacteriol. 120, 945–954 (1974)PubMedGoogle Scholar
  33. Molander, C.W., Kagan, B.M., Weinberger, H.J., Heimlich, E.M., Busser, R.J.: Induction by antibiotics and comparative sensitivity of L-phase variants of S. aureus. J. Bacteriol. 88, 591–594 (1964)PubMedGoogle Scholar
  34. Mueller, P., Rudin, D.O.: Current topics in bioenergetics. Sanadi, D.R. (ed.), p. 157. New York: Academic Press 1969Google Scholar
  35. Newton, G.G.F., Abraham, E.P.: Some properties of the bacitracin polypeptides. Biochem. J. 53, 597–604 (1953)PubMedGoogle Scholar
  36. Park, J.T.: Inhibition of cell-wall synthesis in Staphylococcus aureus by chemicals which cause accumulation of wall prcursors. Biochem. J. 70, 2P (1958)Google Scholar
  37. Park, J.T.: Inhibition of synthesis of bacterial mucopeptide or protein by certain antibiotics and its possible significance for microbiology and medicine. Antimicrob. Agents Ann. 338–343 (1960)Google Scholar
  38. Regna, P.P.: The chemistry of antibiotics. In: Antibiotics, their chemistry and nonmedical uses, p. 58. New York: D. van Nostrand Co. Inc. 1959Google Scholar
  39. Reynolds, P.E.: Peptidoglycan synthesis in Bacilli II, characteristics of protoplast membrane preparations. Biochim. Biophys. Acta 237, 255–272 (1971)PubMedCrossRefGoogle Scholar
  40. Rosenthal, K.S., Storm, D.R.: Disruption of the Escherichia coli outer membrane permeability barrier by immobilized polymyxin B. J. Antibiot. 30, 1087–1092 (1977)PubMedGoogle Scholar
  41. Rotta, J., Karakawa, W.W., Krause, R.M.: Isolation of L forms from group A streptococci exposed to bacitracin. J. Bacteriol. 89, 1581–1585 (1965)PubMedGoogle Scholar
  42. Schechter, N., Nishino, T., Rudney, H.: The synthesis of 3-nonaprenyl-4-hydroxybenzoate in rat liver mitochondria. Arch. Biochem. Biophys. 158, 282–287 (1973)PubMedCrossRefGoogle Scholar
  43. Shockman, G.D., Lampen, J.O.: Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bacteriol. 84, 508–512 (1962)PubMedGoogle Scholar
  44. Siewert, G., Strominger, J.L.: Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in biosynthesis of the peptidoglycan of bacterial cell walls. Proc. Natl. Acad. Sci. USA 57, 767–773 (1967)PubMedCrossRefGoogle Scholar
  45. Sleytr, U.B., Oliver, T.C., Thorne, K.J.I.: Bacitracin-induced changes in bacterial plasma membrane structure. Biochim. Biophys. Acta 419, 570–573 (1976)PubMedCrossRefGoogle Scholar
  46. Smith, J.L., Weinberg, E.D.: Mechanisms of antibacterial action of bacitracin. J. Gen. Microbiol. 28, 559–569 (1962)PubMedGoogle Scholar
  47. Snoke, J.E., Cornell, N.: Protoplast lysis and inhibition of growth of Bacillus licheniformis by bacitracin. J. Bacteriol. 89, 415–420 (1965)PubMedGoogle Scholar
  48. Stone, K.J., Strominger, J.L.: Mechanism of action of bacitracin: Complexation with metal ion and C55-isoprenyl pyrophosphate. Proc. Natl. Acad. Sci. USA 68, 3223–3227 (1971)PubMedCrossRefGoogle Scholar
  49. Stone, K.J., Strominger, J.L.: Inhibition of sterol biosynthesis by bacitracin. Proc. Natl. Acad. Sci. USA 69, 1287–1289 (1972)PubMedCrossRefGoogle Scholar
  50. Storm, D.R.: Mechanism of bacitracin action, a specific lipid-peptide interaction. N.Y. Acad. Sci. 235, 387–398 (1974)CrossRefGoogle Scholar
  51. Storm, D.R., Strominger, J.L.: Complex formation between bacitracin peptides and isoprenyl pyrophosphates. J. Biol. Chem. 248, 3940–3945 (1973)PubMedGoogle Scholar
  52. Storm, D.R., Strominger, J.L.: Binding of bacitracin to cells and protoplasts of Micrococcus lysodeikticus. J. Biol. Chem. 249, 1823–1827 (1974)PubMedGoogle Scholar
  53. Storm, D.R., Swanson, P.E., Rosenthal, K.S.: Polymyxin and related peptide antibiotics. Ann. Rev. Biochem. 46, 723–763 (1977)PubMedCrossRefGoogle Scholar
  54. Tsuji, K., Robertson, J.H., Bach, J.A.: Quantitative high pressure liquid chromatographic analysis of bacitracin, a polypeptide antibiotic. J. Chromatogr. 99, 597–608 (1974)PubMedCrossRefGoogle Scholar
  55. Wasylishen, R.E., Graham, M.R.: A nuclear magnetic resonance study of the metal binding sites in bacitracin. Can. J. Biochem. 53, 1250–1254 (1975)PubMedCrossRefGoogle Scholar
  56. Weinberg, E.D.: Enhancement of bacitracin by the metallic ions of group II B. Antibiot. Annu., 924–929 (1958)Google Scholar
  57. Weinberg, E.D.: Bacitracin, gramicidin, and tyrocidine. Antibiotics II, 240–253 (1967)Google Scholar
  58. Williams, R.E.O.: L forms of Staphylococcus aureus. J. Gen. Microbiol. 33, 325–334 (1963)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • D. R. Storm
  • W. A. ToscanoJr.

There are no affiliations available

Personalised recommendations