Skip to main content

Stochastic Processes in Population Genetics, with Special Reference to Distribution of Gene Frequencies and Probability of Gene Fixation

  • Chapter
Mathematical Topics in Population Genetics

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 1))

Abstract

The fundamental quantity which is used in population genetics to describe the genetic composition of a Mendelian population (i.e. reproductive community) is the gene frequency, or the proportion of a given gene in the population. Thus, a population is characterized by a set of gene frequencies.

Contribution No. 697 from the National Institute of Genetics, Misima, Shizuoka-ken, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Crow, J. F.: Breeding structure of populations. II. Effective population number. In: Statistics and mathematics in biology, pp. 543–556. Ames, Iowa: Iowa State College Press 1954.

    Google Scholar 

  • -, and N. Morton: Measurement of gene frequency drift in small populations. Evolution 9, 202–214 (1955).

    Article  Google Scholar 

  • -, and M. Kimura: An introduction to population genetics theory. New York: Harper and Row 1970.

    MATH  Google Scholar 

  • Deevey, E. S. Jr.: The human population. Sci. Am. 203, 195–204 (1960).

    Article  Google Scholar 

  • Ewens, W. J.: The probability of a new mutant in a fluctuating environment. Heredity 22, 438–443 (1967).

    Article  Google Scholar 

  • Fisher, R. A.: On the dominance ratio. Proc. Roy. Soc. Edinburgh 42, 321–341 (1922).

    Google Scholar 

  • - The genetical theory of natural selection. Oxford: Clarendon Press 1930.

    MATH  Google Scholar 

  • Haldane, J. B. S.: A mathematical theory of natural and artificial selection. Part V: Selection and mutation. Proc. Cambridge Phil. Soc. 23, 838–844 (1927).

    Article  MATH  Google Scholar 

  • Hill, W. G., and A. Robertson: Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231 (1968).

    Article  Google Scholar 

  • Karlin, S., and J. McGregor: On some stochastic models in genetics. In: Gurland, J. (Ed.): Stochastic models in medicine and biology, pp. 245–271. Madison: University of Wisconsin Press 1964.

    Google Scholar 

  • Kerr, W. E.: Multiple alleles and genetic load in bees. J. Apicult. Res. 6, 61–64 (1967).

    Google Scholar 

  • Kimura, M.: Solution of a process of random genetic drift with a continuous model. Proc. Natl. Acad. Sci. U.S. 41, 144–150 (1955a).

    Article  MATH  Google Scholar 

  • - Random genetic drift in multi-allelic locus. Evolution 9, 419–435 (1955b).

    Article  Google Scholar 

  • - Random genetic drift in a tri-allelic locus: Exact solution with a continuous model. Biometrics 12, 57–66 (1956).

    Article  Google Scholar 

  • - Some problems of stochastic processes in genetics. Ann. Math. Stat. 28, 882–901 (1957).

    Article  MATH  Google Scholar 

  • - On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).

    Google Scholar 

  • -, and J. F. Crow: The measurement of effective population number. Evolution 17, 279–288 (1963).

    Article  Google Scholar 

  • -, T. Maruyama, and J. F. Crow: The mutation load in small populations. Genetics 48, 1303–1312 (1963).

    Google Scholar 

  • - Diffusion models in population genetics. J. Appl. Prob. 1, 177–232 (1964).

    Article  MATH  Google Scholar 

  • -, and J. F. Crow: The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).

    Google Scholar 

  • - Evolutionary rate at the molecular level. Nature (Lond.) 217, 624–626 (1968a).

    Article  Google Scholar 

  • - Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269 (1968b).

    Google Scholar 

  • - The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903 (1969).

    Google Scholar 

  • -, and T. Ohta: The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969).

    Google Scholar 

  • Kojima, K., and T. M. Kelleher: Survival of mutant genes. Amer. Natur. 96, 329–346 (1962).

    Article  Google Scholar 

  • Miller, G. F.: The evalution of eigenvalues of a differential equation arising in a problem in genetics. Proc. Cambridge Phil. Soc. 58, 588–593 (1962).

    Article  MATH  Google Scholar 

  • Moran, P. A. P.: The survival of a mutant under general conditions. Proc. Cambridge Phil. Soc. 57, 304–314 (1961).

    Article  MATH  Google Scholar 

  • Muller, H. J.: Evolution by mutation. Bull. Am. Math. Soc. 64, 137–160 (1958).

    Article  Google Scholar 

  • Nei, M., and Y. Imaizumi: Effects of restricted population size and increase in mutation rate on the genetic variation of quantitative characters. Genetics 54, 763–782 (1966).

    Google Scholar 

  • Ohta, T.: Effect of initial linkage disequilibrium and epistasis on fixation probability in a small population, with two segregating loci. Theor. Appl. Genet. 38, 243–248 (1968).

    Article  Google Scholar 

  • -, and M. Kimura: Linkage disequilibrium due to random genetic drift. Genet. Res. 13, 41–55 (1969).

    Article  Google Scholar 

  • Robertson, A.: A theory of limits in artificial selection. Proc. Roy. Soc. B, 153, 234–249 (1960).

    Article  Google Scholar 

  • - Selection for heterozygotes in small populations. Genetics 47, 1291–1300 (1962).

    Google Scholar 

  • Watterson, G. A.: Some theoretical aspects of diffusion theory in population genetics. Ann. Math. Stat. 33, 939–957 (1962).

    Article  MathSciNet  Google Scholar 

  • Wright, S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    Google Scholar 

  • - The distribution of gene frequencies in populations. Proc. Natl. Acad. Sci. U.S. 23, 307–320 (1937).

    Article  MATH  Google Scholar 

  • - The distribution of gene frequencies under irreversible mutation. Proc. Natl. Acad. Sci. U.S. 24, 253–259 (1938).

    Article  MATH  Google Scholar 

  • - Statistical genetics in relation to evolution. Actualités Scientifiques et Industrielles 802. Exposés de Biométrie et de Statistique Biologique. Paris: Hermann et Cie. 1939.

    Google Scholar 

  • - Statistical genetics and evolution. Bull. Am. Math. Soc. 48, 223–246 (1942).

    Article  MATH  Google Scholar 

  • - The differential equation of the distribution of gene frequencies. Proc. Natl. Acad. Sci. U.S. 31, 382–389 (1945).

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Ken-ichi Kojima

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kimura, M. (1970). Stochastic Processes in Population Genetics, with Special Reference to Distribution of Gene Frequencies and Probability of Gene Fixation. In: Kojima, Ki. (eds) Mathematical Topics in Population Genetics. Biomathematics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46244-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46244-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46246-7

  • Online ISBN: 978-3-642-46244-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics