Skip to main content

Evolutionary Significance of Linkage and Epistasis

  • Chapter
Mathematical Topics in Population Genetics

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 1))

Abstract

Linkage is the linear sequence of a group of non-allelic genes which forms a physically disjunct group from other linked groups of genes. The tie between closely located genes is stronger than that between genes far apart on the linear sequence. For this reason, closely linked genes are more likely to take similar evolutionary paths than those linked loosely. Epistasis is the functional interdependence or interaction of non alleles. When an effect of interaction between particular non-alleles is favorable under selection, the chance of survival of these alleles is increased in comparison to the chance for other non-alleles at those loci which do not interact favorably. Since linkage and epistasis represent physical and functional aspects of non-alleles, the joint consideration of these two factors is a necessary step for the examination of evolutionary problems of more than one locus.

Kojima acknowledges the support provided by Public Health Service Grant GM-15769 and AT-(40-1)-3681, and Lewontin that of AEC Contract AT (11-1) 1437.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodmer, W. F., and P. A. Parsons: Linkage and recombination in evolution. Advan. Genet. 11, 1–99 (1962).

    Article  Google Scholar 

  • -, and J. Felsenstein: Linkage and selections: theoretical analysis of the deterministic two-locus random mating model. Genetics 57, 237–265 (1967).

    Google Scholar 

  • Ewens, W. J.: A genetic model having complex linkage behavior. Theor. Appl. Genet. 38, 140–144 (1968).

    Article  Google Scholar 

  • Felsenstein, J.: The effect of linkage on directional selection. Genetics 52, 349–363 (1965).

    Google Scholar 

  • Fisher, R. A.: The genetical theory of natural selection. Oxford: Clarendon Press 1930.

    MATH  Google Scholar 

  • Franklin, I., and R. C. Lewontin: (In preparation) (1969).

    Google Scholar 

  • Geiringer, H.: On the probability theory of linkage in Mendelian heredity. Ann. Math. Statist. 15, 25–57 (1944).

    Article  MATH  MathSciNet  Google Scholar 

  • Hill, W. G., and A. Robertson: The effects of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).

    Article  Google Scholar 

  • Jain, S. K., and R. W. Allard: The effects of linkage, epistasis, and inbreeding on population changes under selection. Genetics 53, 633–659 (1966).

    Google Scholar 

  • Karlin, S., and M. W. Feldman: Linkage and selection: new equilibrium properties of the two-locus symmetric model. Proc. Natl. Acad. Sci. U.S. 62, 70–74 (1969).

    Article  Google Scholar 

  • Kimura, M.: A model of a genetic system which leads to closer linkage by natural selection. Evolution 10, 278–287 (1956).

    Article  Google Scholar 

  • - On the change of population fitness by natural selection. Heredity 12, 145–167 (1958).

    Article  Google Scholar 

  • - Attainment of quasi linkage equilibrium when gene frequencies are changing by natural selection. Genetics 52, 875–890 (1965).

    Google Scholar 

  • Kojima, K.: Role of epistasis and overdominance in stability of equilibria with selection. Proc. Natl. Acad. Sci. U.S. 45, 984–989 (1959a).

    Article  MATH  Google Scholar 

  • - Stable equilibria for the optimum model. Proc. Natl. Acad. Sci. U.S. 45, 989–993 (1959b).

    Article  MATH  Google Scholar 

  • - The evolutionary dynamics of two-gene systems. In: R. W. Stacy and B. Waxman (eds.): Computers in biomedical research. New York: Academic Press 1965.

    Google Scholar 

  • -, and T. M. Kelleher: Changes in mean fitness in a random mating population when epistasis and linkage are present. Genetics 46, 527–540 (1961).

    Google Scholar 

  • -, and Andrea Klekar: Deterministic simulation of evolutionary changes in three-locus genetic systems. In: Computer applications in genetics, pp. 147–159. Proc. Int. Conference on Computer Applications in Genetics. Ed. by N. E. Morton. Honolulu: University of Hawaii Press 1969.

    Google Scholar 

  • -, and H. E. Schaffer: Accumulation of epistatic gene complexes. Evolution 18, 127–129 (1964).

    Article  Google Scholar 

  • - - Survival process of linked mutant genes. Evolution 21, 518–531 (1967).

    Article  Google Scholar 

  • Lewontin, R. C.: The interaction of selection and linkage. I. General considerations: heterotic models. Genetics 49, 49–67 (1964a).

    Google Scholar 

  • - The interaction of selection and linkage. II. Optimum models. Genetics 50, 757–782 (1964b).

    Google Scholar 

  • -, and K. Kojima: The evolutionary dynamics of complex polymorphisms. Evolution 14, 458–472 (1960).

    Article  Google Scholar 

  • Li, C. C.: Genetic equilibria under selection. Biometrics 23, 397–484 (1957).

    Article  Google Scholar 

  • Lotka, A. J.: Elements of mathematical biology. New York: Dover Publ. 1956.

    MATH  Google Scholar 

  • Moran, P. A. P.: On the nonexistence of adaptive topographies. Ann. Hum. Genet. 27, 383–393 (1964).

    Article  MATH  Google Scholar 

  • Nei, M.: Effect of selection on the components of genetic variance. In: W. D. Hanson and H. F. Robinson (eds.) Statistical genetics and plant breeding. Natl. Acad Sci. — Natl. Res. Council Publ. 982, 501–515 (1963).

    Google Scholar 

  • Singh, M., and R. C. Lewontin: Stable equilibria under optimizing selection. Proc. Natl. Acad. Sci. 56, 1345–1348 (1966).

    Article  Google Scholar 

  • Sved, J.: The stability of linked systems of loci with a small population size. Genetics 59, 543–565 (1968).

    Google Scholar 

  • Turner, J. R. G.: Mean fitness and the equilibria in multilocus polymorphisms. Proc. Roy. Soc. B 169, 31–58 (1967a).

    Article  Google Scholar 

  • - On supergenes. I. The evolution of supergenes. Amer. Natur. 101, 195–221 (1967b).

    Article  Google Scholar 

  • Wright, S.: Evolution in populations in approximate equilibrium. J. Genet. 30, 257–266 (1935).

    Article  Google Scholar 

  • - The genetics of quantitative variability. In: K. Mather (ed.): Quantitative inheritance, pp. 5–41. Her Majesty’s Stationary Office 1952.

    Google Scholar 

  • - Factor interaction and linkage in evolution. Proc. Roy. Soc. London B 162, 80–104 (1965).

    Article  Google Scholar 

  • - “Surfaces” of selective value. Proc. Natl. Acad. Sci. U.S. 58, 165–172 (1967).

    Article  Google Scholar 

Download references

Authors

Editor information

Ken-ichi Kojima

Additional information

This paper is dedicated to Professor Th. Dobzhansky for his seventieth birthday celebration, and his long lasting leadership in experimental population genetics.

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kojima, K., Lewontin, R.C. (1970). Evolutionary Significance of Linkage and Epistasis. In: Kojima, Ki. (eds) Mathematical Topics in Population Genetics. Biomathematics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46244-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46244-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46246-7

  • Online ISBN: 978-3-642-46244-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics