Advertisement

Pentitol-Metabolizing Enzymes of the Uronic Acid Pathway

  • Siegfried Hollmann
Conference paper

Abstract

According to the sequence of reactions of the uronic acid pathway shown in the preceding chapter, two pentitol dehydrogenases (Fig. 1) linking L-and D-xylulose via xylitol are operative in this third pathway of carbohydrate metabolism in mammals, namely the NAD- and the NADP-specific xylitol dehydrogenase, systematically named xylitol: NAD oxidoreductase (D-xylulose-forming) (EC 1.1.1.9) and xylitol: NADP oxidoreductase (L-xylulose-forming) (EC 1.1.1.10), respectively. Mention has also been made already of the fact that pentosuric individuals, after administration of D-glucuronolactone-1-13C, excrete labeled L-arabitol in their urine [1]. This observation may be taken as suggestive evidence for the existence in mammals of a third pentitol oxidizing enzyme interconverting L-arabitol and L-xylulose. There is no indication whatever for the occurrence in mammals of an enzyme possibly linking D-arabitol to D-xylulose. Moreover, D-arabitol has been shown to be a very poor precursor of glycogen in rats guinea pigs [2]. Therefore, only the three systems mentioned above have to be discussed in the following sections.

Keywords

Liver Mitochondrion Pyridine Nucleotide Xylitol Dehydrogenase Polyol Dehydrogenase Dietary Ascorbic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Touster, O., S. O. Harwell: J. biol. Chem. 230, 1031 (1958).PubMedGoogle Scholar
  2. 2.
    McCormick, D. B., O. Touster: Biochim. biophys. Acta (Amst.) 54, 598 (1961).CrossRefGoogle Scholar
  3. 3.
    Touster, O., V. H. Reynolds, R. M. Hutcheson: J. biol. Chem. 221, 697 (1956).PubMedGoogle Scholar
  4. 4.
    Hollmann, S., O. Touster: J. biol. Chem. 225, 87 (1957).PubMedGoogle Scholar
  5. 5.
    Hickman, J., G. Ashwell: J. biol. Chem. 234, 758 (1959).PubMedGoogle Scholar
  6. 6.
    Hollmann, S., G. Laumann: Hoppe-Seylers Z. physiol. Chem. 348, 1073 (1967).Google Scholar
  7. 7.
    Hollmann, S., Hoppe-Seylers Z. physiol. Chem. 317, 193 (1959).PubMedCrossRefGoogle Scholar
  8. 8.
    Batt, R. D., F. Dickens, D. H. Williamson: Biochem. J. 77, 272 (1960).PubMedGoogle Scholar
  9. 9.
    Glock, G. E., P. McLean: Biochem. J. 56, 171 (1954).PubMedGoogle Scholar
  10. 10.
    Robinson, D., R. T. Williams: Biochem. J. 68, 23P (1958).Google Scholar
  11. 11.
    Blakley, R. L.: Biochem. J. 49, 257 (1951).PubMedGoogle Scholar
  12. 12.
    Williams-Ashman, H. G., J. Banks: Arch. Biochem. 50, 513 (1954).PubMedCrossRefGoogle Scholar
  13. 13.
    Williams-Ashman, H. G., J. Banks, S. K. Wolfson Jr.: Arch. Biochem. 72, 485 (1957).PubMedCrossRefGoogle Scholar
  14. 14.
    King, T. E., T. Mann: Nature (Lond.) 182, 868 (1958).CrossRefGoogle Scholar
  15. 15.
    McCorkindale, J., N. L. Edson: Biochem. J. 57, 518 (1954).PubMedGoogle Scholar
  16. 16.
    Smith, M. G.: Biochem. J. 83, 135 (1962).PubMedGoogle Scholar
  17. 17.
    Gerlach, U.: Klin. Wschr. 37, 93 (1959).PubMedCrossRefGoogle Scholar
  18. 18.
    Touster, O., G. Montesi: In: S. P. Colowick and N. O. Kaplan, Methods in enzymology, vol. V, p. 317- New York: Academic Press 1962.Google Scholar
  19. 19.
    Hollmann, S., D. Lattermann: Hoppe-Seylers Z. physiol. Chem. 350, 106 51(1969).Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1969

Authors and Affiliations

  • Siegfried Hollmann
    • 1
  1. 1.Department of Physiological ChemistryUniversity of DüsseldorfDüsseldorfWest Germany

Personalised recommendations