Advertisement

Vitamin B12-Dependent Conversion of Ribonucleotides to Deoxyribonucleotides

  • William S. Beck
Conference paper

Abstract

I should like this morning to describe some of our studies on the biosynthetic pathway of deoxyribose, a pentose of some biological importance. At least two pathways of deoxyribose synthesis occur in nature. One requires the participation of a vitamin B12 derivative; the other does not. This essay deals with the vitamin B12-dependent pathway. The next speaker, Dr. Larsson, will consider the vitamin B12-independent pathway.

Keywords

Reductase Activity Ribonucleotide Reductase Megaloblastic Anemia Prime Effector Secondary Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    White, J. C., I. Leslie, and J. N. Davidson : Nucleic acids of bone marrowcells, with special reference to pernicious anemia. J. Path. Bact. 66, 291 (1953).Google Scholar
  2. 2.
    Glazer, H. S., J. F. Mueller, T. Jarrold, K. Sakurai, J. J. Will, R. W. Yilter: Effect of vitamin B12 and folic acid on nucleic acid composition of the bone marrow of patients with megaloblastic anemia. J. Lab. clin. Med. 43, 905 (1954).PubMedGoogle Scholar
  3. 3.
    Lessner, H. E., and M. Friedkin: In vitro incorporation of deoxyuridine and thymidine into deoxyribonucleic acid of human megaloblastic and normoblastic bone marrow. Clin. Res. 7, 207 (1959).Google Scholar
  4. 4.
    Thomas, E. C., and H. L. Lochte Jr.: Studies on biochemical defect of pernicious anemia. I. In vitro observations on oxygen consumption, heme synthesis, and deoxyribonucleic acid synthesis by pernicious anemia bone marrow. J. clin. Invest. 37, 166 (1958).Google Scholar
  5. 5.
    Beck, W. S., and M. Goulian: Drugs for pernicious anemia and related megaloblastic anemias, chap. 51, p. 817–831 in: Drill’s Pharmacology in Medicine, 3rd ed. (J. R. DiPalma, ed.). New York: McGraw-Hill (Blakiston Division ) 1965.Google Scholar
  6. 6.
    Wahba, A. J., and M. Friedkin: The enzymatic synthesis of thymidylate. I. Early steps in the purification of thymidylate synthetase of Escherichia coli. J. biol. Chem. 237, 2794 (1962).Google Scholar
  7. 7.
    Weissbach, H., J. Toohey, and H. A. Barker: Isolation and properties of B12 coenzymes containing benzimidazole or dimethylbenzimidazole. Proc. nat. Acad. Sci. (Wash.) 45, 521 (1959).CrossRefGoogle Scholar
  8. 8.
    Lenhert, P. G., and D. C. Hodgkin: Structure of the 5,6-dimethylbenz-imidazolylcobamide coenzyme. Nature (Lond.) 192, 937 (1961).CrossRefGoogle Scholar
  9. 9.
    Buchanan, J. M., and S. C. Hartman: Enzymic reactions in the synthesis of the purines. Advanc. Enzymol. 21, 199 (1959).Google Scholar
  10. 10.
    Reichard, P.: The enzymic synthesis of pyrimidines. Advanc. Enzymol. 21, 263 (1959).Google Scholar
  11. 11.
    Reichard, P A., Baldesten, and L. Rutberg: Formation of deoxycytidine phosphates from cytidine phosphates in extracts from Escherichia coli. J. biol. Chem. 236, 1150 (1961).PubMedGoogle Scholar
  12. 12.
    Reichard, P.: Enzymatic synthesis of deoxyribonucleotides. I. Formation of deoxycytidine diphosphate from cytidine diphosphate with enzymes from Escherichia coli. J. biol. Chem. 237, 3513 (1962).Google Scholar
  13. 13.
    Kitay, E., W. S. McNutt, and E. E. Snell: Non-specificity of thymidine as growth factor for lacticacid bacteria. J. biol. Chem. 177, 993 (1949).PubMedGoogle Scholar
  14. 14.
    Downing, M., and B. S. Schweigert: Role of vitamin B12 in nucleic acid metabolism. IV. Metabolism of C14-labeled thymidine by Lactobacillus leichmannii. J. biol. Chem. 220, 521 (1956).PubMedGoogle Scholar
  15. 15.
    Manson, L. A.: Vitamin B12 and deoxyribose synthesis in Lactobacillus leichmannii. J. biol. Chem. 235, 521 (1956).Google Scholar
  16. 16.
    Wacker, A., S. Kirschfeld n. L.Träger: Die Biosynthese der Desoxy-ribose bei Bakterien. Z. Natnrforsch. 14b, 145 (1959).Google Scholar
  17. 17.
    Williams, A. M., J. J. Chosy, and R. F. Schilling: Effect of vitamin B12 in vitro on incorporation of nucleic acid precursors by pernicious anemia bone marrow. J. clin. Invest. 42, 670 (1963).PubMedCrossRefGoogle Scholar
  18. 18.
    Beck, W. S., M. Goulian, and S. Hook: Metabolic functions of vitamin B12. II. Participation of vitamin B12 in the biosynthesis of deoxyribonucleic acid and its acid-soluble precursors. Biochim. biophys. Acta (Amst.) 55, 470 (1962).CrossRefGoogle Scholar
  19. 19.
    Beck, W. S., S. Hook, and B. H. Barnett: Metabolic functions of vitamin B12. I. Distinctive modes of unbalanced growth behavior in Lactobacillus leichmannii. Biochim. biophys. Acta (Amst.) 55, 455 (1962).CrossRefGoogle Scholar
  20. 20.
    Beck, W. S., The metabolic basis of megaloblastic erythropoiesis. Medicine (Baltimore) 43, 715 (1964).Google Scholar
  21. 21.
    Beck, W. S., M. Goulian, and S. Kashket: The role of vitamin B12 in deoxyribonucleic acid synthesis: studies of a model megaloblast. Trans. Ass. Amer. Phycns 78, 343 (1965).Google Scholar
  22. 22.
    Biswas, C., M. Goulian, J. Hardy, and W. S. Beck: Factors controlling the enzymatic conversion of ribonucleotides to deoxyribonucleotides. Fed. Proc. 24, 532 (1964).Google Scholar
  23. 23.
    Goulian, M., and W. S. Beck: Variations of intracellular deoxyribosyl compounds in deficiencies of vitamin B12, folic acid, and thymine. Biochim. biophys. Acta (Amst.) 129, 336 (1966).Google Scholar
  24. 24.
    Munch-Petersen, A., and J. Neuhard: Studies on the acid-soluble deoxy-nucleotide pool in thymine-requiring mutants of Escherichia coli during thymine starvation. I. Accumulation of deATP in E. coli 15T-A-U-. Biochim. biophys. Acta (Amst.) 80, 542 (1964).Google Scholar
  25. 25.
    Biswas, C., J. Hardy, and W. S. Beck: Release of repressor control of ribonucleotide reductase by thymine starvation. J. biol. Chem. 240, 3631 (1965).PubMedGoogle Scholar
  26. 26.
    Goulian, M., and W. S. Beck: Storage of folate by Lactobacillus leichmannii. Biochim. biophys. Acta (Amst.) 124, 423 (1966).CrossRefGoogle Scholar
  27. 27.
    Beck, W. S., and J. Hardy: Requirement of ribonucleotide reductase for cobamide coenzyme, a product of ribosomal activity. Proc. nat. Acad. Sci. (Wash.) 54, 286 (1965).CrossRefGoogle Scholar
  28. 28.
    Blakley, R. L., and H. A. Barker: Cobamide stimulation of the reduction of ribonucleotides to deoxyribotides in Lactobacillus leichmannii. Biochem. biophys. Res. Commun. 16, 391 (1964).Google Scholar
  29. 29.
    Kashket, S., J. T. Kaufman, and W. S. Beck: The metabolic functions of vitamin B12. III. Vitamin B12 binding in Lactobacillus leichmannii and other lactobacilli. Biochim. biophys. Acta (Amst.) 64, 447 (1962).CrossRefGoogle Scholar
  30. 30.
    Kashket, S., J. T. Kaufmann, and W. S. Beck: The metabolic functions of vitamin B12. IV. Binding of vitamin B12 by ribosomes in Lactobacillus leichmannii. Biochim. biophys. Acta (Amst.) 64, 458 (1962).CrossRefGoogle Scholar
  31. 31.
    Kashket, S., and W. S. Beck: Reversible release of vitamin B12-binding protein from bacterial ribosomes. Biochim. biophys. Acta (Amst.) 129, 350 (1966).Google Scholar
  32. 32.
    Kashket, S., and W. S. Beck, The relative ribonuclease resistance of vitamin B12-binding ribosomes, a specific class within the ribosome population. Biochem. Z. 342, 449 (1965).Google Scholar
  33. 33.
    Ohta, H., W. S. Beck : Unpublished observations.Google Scholar
  34. 34.
    Goulian, M., W. S. Beck: Purification and properties of cobamide-dependent ribonucleotide reductase from Lactobacillus leichmannii. J. biol. Chem. 241, 4233 (1966).PubMedGoogle Scholar
  35. 35.
    Abrams, R.: Cytidine 5’-triphosphate as the precursor of deoxycytidylate in Lactobacillus leichmannii. J. biol. Chem. 240, PC3697 (1965).Google Scholar
  36. 36.
    Blakley, R. L., R. K. Ghambeer, P. F. Nixon, and E. Vitols: The cobamide-dependent ribonucleoside triphosphate reductase of lactobacilli. Biochem. biophys. Res. Commun. 20, 439 (1965).Google Scholar
  37. 37.
    Yphantis, D. A.: Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3, 297 (1964).PubMedCrossRefGoogle Scholar
  38. 38.
    Reichard, P.: The synthesis of deoxyribose by the chick embryo. Biochim biophys. Acta (Amst.) 27, 434 (1958).CrossRefGoogle Scholar
  39. 39.
    Vitols, E., R. L. Blakley: Hydrogen-donor specificity of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Biochem. biophys. Res. Commun. 21, 466 (1965).Google Scholar
  40. 40.
    Beck, W. S., M. Goulian, A. Larsson, P. Reichard: Hydrogen donor specificity of cobamide-dependent ribonucleotide reductase and allosteric regulation of substrate specificity. J. biol. Chem. 241, 2177 (1966).PubMedGoogle Scholar
  41. 41«Orr, M. D., E. Vitols: Thioredoxin from Lactobacillus leichmannii and its role as hydrogen donor for ribonucleoside triphosphate reductase. Biochem. biophys. Res. Commun. 25, 109 (1966).Google Scholar
  42. 42.
    Monod, J., J. Wyman, J.-P. Changeux: On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88 (1965).PubMedCrossRefGoogle Scholar
  43. 43.
    Beck, W. S.: Regulation of cobamide-dependent ribonucleotide reductase by allosteric effectors and divalent cations. J. biol. Chem. 242, 3148 (1967).PubMedGoogle Scholar
  44. 44.
    Larsson, A., P. Reichard: Allosteric effects and substrate specificity of the ribonucleoside diphosphate reductase system from Escherichia coli B. Biochim. biophys. Acta (Amst.) 113, 407 (1966).Google Scholar
  45. 45.
    Larsson, A., P. Reichard, Enzymatic synthesis of deoxyribonucleotides. IX. Allosteric effects in the reduction of pyrimidine ribonucleotides by the ribonucleoside diphosphate reductase system of Escherichia coli. J. biol. Chem. 241, 2533 (1966).PubMedGoogle Scholar
  46. 46.
    Larsson, A., P. Reichard, Enzymatic synthesis of deoxyribonucleotides. X. Reduction of purine ribonucleotides; allosteric behavior and substrate specificity of the enzyme system from Escherichia coli. J. biol. Chem. 241, 2540 (1966).Google Scholar
  47. 47.
    Gottesman, M. M., W. S. Beck: Transfer of hydrogen in the cobamide-dependent ribonucleotide reductase reaction. Biochem. biophys. Res. Commun. 24, 353 (1966).Google Scholar
  48. 48.
    Blakley, R. L., R. K. Ghambeer, J. J. Batterham, C. Brownson: Studies with hydrogen isotopes on the mechanism of action of cob- amide-dependent ribonucleotide reductase. Biochem. biophys. Res. Commun. 24, 418 (1966).Google Scholar
  49. 49.
    Frey, P. A., R. H. Abeles: The role of the B12 coenzyme in the conversion of 1,2-propanediol to propionaldehyde. J. biol. Chem. 241, 2732 (1966).PubMedGoogle Scholar
  50. 50.
    Beck, W. S., R. H. Abeles, W. G. Robinson: Transfer of hydrogen from cobamide coenzyme to water during enzymatic ribonucleotide reduction. Biochem. biophys. Res. Commun. 25, 421 (1966).Google Scholar
  51. 51.
    Abeles, R. H., W. S. Beck: The mechanism of action of cobamide coenzyme in the ribonucleotide reductase reaction. J. biol. Chem. 242, 3589 (1967).PubMedGoogle Scholar
  52. 52.
    Vitols, E., C. Brownson, W. Gardiner, R. Blakley: Cobamides and ribonucleotide reduction. V. A kinetic study of the ribonucleoside triphosphate reductase of Lactobacillus leichmannii. J. biol. Chem. 242, 3035 (1967).Google Scholar
  53. 53.
    Sable, H. Z.: Biosynthesis of ribose and deoxyribose. Advanc. Enzymol. 28, 391 (1966).Google Scholar
  54. 54.
    Larsson, A.: Enzymatic synthesis of deoxyribonucleotides. VII. Studies on the hydrogen transfer with tritiated water. Biochemistry 4, 1984 (1965).Google Scholar
  55. 55.
    Moore, E. C., P. Reichard: Enzymatic synthesis of deoxyribonucleotides. VI. The cytidine diphosphate reductase system from Novikoff hepatoma. J. biol. Chem. 239, 3453 (1964).PubMedGoogle Scholar
  56. 56.
    Moore, E. C., R. B. Hurlbert: Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J. biol. Chem. 241, 4802 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1969

Authors and Affiliations

  • William S. Beck
    • 1
    • 2
  1. 1.Department of MedicineHarvard Medical SchoolBostonUSA
  2. 2.Hematology Unit of the Medical ServiceMassachusetts General HospitalBostonUSA

Personalised recommendations