Advertisement

Die molekularen Grundlagen der Photoreaktivierung

  • Heinz Schuster
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 47)

Zusammenfassung

In den Desoxyribonucleinsäuren (DNS)1 der Zellen und der Viren ist die genetische Information enthalten, welche die identische Reproduktion der biologischen Systeme gewährleistet. Neben der DNS kommt bei einer Reihe von Viren auch noch Ribonucleinsäure (RNS) als Informationsträger vor.

Die folgenden Abkurzungen werden verwendet

DNS

Desoxyribonuclein­sdure

RNS

Ribonucleinsaure

HCR

Wirtszellreaktivierung („host cell reactiva­tion“)

PR

Photoreaktivierung

UV

Ultraviolett(-Licht)

BU

Bromuracil

T=T, T=C, C=C, T=U, U=U

dimere Verbindungen von Thymin mit Thymin, Thymin mit Cytosin, Cytosin mit Cytosin, Thymin mit Uracil und Uracil mit Uracil

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bawden, F. C., and A. Kleczkowski: Studies on the ability of light to counteract the inactivating action of ultraviolet radiation on plant viruses. J. gen. Microbiol. 13, 370–382 (1955).PubMedGoogle Scholar
  2. Bawden, F. C., and A. Kleczkowski: Photoreactivation of nucleic acid from tobacco mosaic virus. Nature (Lond.) 183, 503–504 (1959).CrossRefGoogle Scholar
  3. Beukers, R.: The effect of proflavine on u.v.-induced dimerization of thymine in DNA. Photochem. Photobiol. 4, 935–937 (1965).PubMedCrossRefGoogle Scholar
  4. Beukers, R., and W. Berends: Isolation and identification of the irradiation product of thymine. Biochim. biophys. Acta (Amst.) 41, 550–551 (1960).CrossRefGoogle Scholar
  5. Boyce, R. P., and P. Howard-Flanders: Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proc. nat. Acad. Sci. (Wash.) 51, 293–300 (1964).CrossRefGoogle Scholar
  6. Cadman, C. H., and B. D. Harrison: Studies on the properties of soil-borne viruses of the tobacco-rattle type occurring in Scotland. Ann. appl. Biol. 47, 542–556 (1959).CrossRefGoogle Scholar
  7. Chessin, M.: Photoreactivation of clover yellow mosaic virus. Photochem. Photobiol. 4, 709–711 (1965).CrossRefGoogle Scholar
  8. Cleaver, J. E.: Photoreactivation: A radiation repair mechanism absent from mammalian cells. Biochem. biophys. Res. Commun. 24, 569–576 (1966).PubMedCrossRefGoogle Scholar
  9. Cook, J. S.: Direct demonstration of the monomerization of thymine-containing dimers in u.v.-irradiated DNA by yeast photoreactivating enzyme and light. Photochem. Photobiol. 6, 97–101 (1967).PubMedCrossRefGoogle Scholar
  10. Cook, J. S., and J. R. McGrath: Photoreactivating-enzyme activity in metazoa. Proc. nat. Acad. Sci. (Wash.) 58, 1359–1365 (1967).CrossRefGoogle Scholar
  11. David, C. N.: UV inactivation and thymine dimerization in bacteriophage ΦX. Z. Vererbungsl. 95, 318–325 (1964).PubMedCrossRefGoogle Scholar
  12. Doudney, C. O.: I. Ultraviolet light effects on the bacterial cell. Current Topics Microbiol. Immunol. 46, 116–175 (1968).Google Scholar
  13. Dulbecco, R.: Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature (Lond.) 163, 949–950 (1949).CrossRefGoogle Scholar
  14. Fruton, J. S., and S. Simmonds: In: General biochemistry. New York: John Wiley & Sons 1958.Google Scholar
  15. Garen, A., and N. D. Zinder: Radiological evidence for partial genetic homology between bacteriophage and host bacteria. Virology 1, 347–376 (1955).PubMedCrossRefGoogle Scholar
  16. Goddard, J., D. Streeter, C. Weber, and M. P. Gordon: Studies on the inactivation of tobacco mosaic virus by ultraviolet light. Photochem. Photobiol. 5, 213–222 (1966).PubMedCrossRefGoogle Scholar
  17. Goodgal, S. H., C. S. Rupert, and R. M. Herriott: Photoreactivation of hemophilus influenzae transforming factor for streptomycin resistence by an extract of escherichia coli B. In: The chemical basis of heredity. Baltimore: Johns Hopkins Press 1957.Google Scholar
  18. Gordon, M. P., and M. Staehelin: Studies on the incorporation of 5-fluorouracil into a virus nucleic acid. Biochim. biophys. Acta (Amst.) 36, 351–36I (1959).CrossRefGoogle Scholar
  19. Griffith, J. D., u. R. B. Setlow: Unveröffentlichte Versuche. Zit. in Setlow et al. 1965.Google Scholar
  20. Hanawalt, P. C.: The U.V. sensitivity of bacteria: its relation to the DNA replication cycle. Photochem. Photobiol. 5, 1–12 (1966).PubMedCrossRefGoogle Scholar
  21. Hanawalt, P. C., and R. H. Haynes: Repair replication of DNA in bacteria: irrelevance of chemical nature of base defect. Biochem. biophys. Res. Commun. 19, 462–467 (1965).PubMedCrossRefGoogle Scholar
  22. Hariharan, P. V., and H. E. Johns: Rate constants for the dehydration of single and double hydrates of cytidylyl (3′–5′)-cytidine. Photochem. Photobiol. 7, 239–259 (1968).PubMedCrossRefGoogle Scholar
  23. Harm, W.: Repair effects in phage and bacteria exposed to sunlight. Radiat. Res. Suppl. 6, 215 (1966).Google Scholar
  24. Harm, W.: Zit. in Werbin et al. 1967.Google Scholar
  25. Harm, W., and B. Hillebrandt: A non-photoreactivable mutant of E. coli B. Photochem. Photobiol. 1, 271–272 (1962).CrossRefGoogle Scholar
  26. Harm, W., and B. Hillebrandt: Kompetitive Hemmung der Photo-Reaktivierung von uv-inaktivierten T4-Phagen durch stark uv-bestrahlte Phagen-DNA. Z. Naturforsch. 18b, 294–300 (1963).Google Scholar
  27. Harm, W., and C. S. Rupert: Infection of transformable cells of haemophilus influenza by bacteriophage and bacteriophage DNA. Z. Vererbungsl. 94, 336–348 (1963).PubMedCrossRefGoogle Scholar
  28. Harrison, B. D., and H. L. Nixon: Some properties of infective preparations made by disrupting tobacco rattle virus with phenol. J. gen. Microbiol. 21, 591–599 (1959).PubMedGoogle Scholar
  29. Howard-Flanders, P., and R. P. Boyce: DNA repair and genetic recombination: Studies on mutants of Escherichia coli defective in these processes. Radiat. Res., Suppl. 6, 156–184 (1966).CrossRefGoogle Scholar
  30. Jagger, J.: Photoreactivation. Bact. Rev. 22, 99–142 (1958).PubMedGoogle Scholar
  31. Jagger, J.: Photoprotection from ultraviolet killing in Escherichia coli B. Radiat. Res., Suppl. 13, 521–539 (1960).Google Scholar
  32. Jagger, J., and R. S. Stafford: Evidence for two mechanisms of photoreactivation in Escherichia coli B. Biophys. J. 5, 75–88 (1965 a).PubMedCrossRefGoogle Scholar
  33. Jagger, J., and R. S. Stafford: Evidence that indirect photoreactivation does not split thymine dimers. Abstract. Pacific Slope Biochemical Conference, University of Southern California, Los Angeles 1965 b.Google Scholar
  34. Jagger, J., W. S. Wise, and R. S. Stafford: Delay in growth and division induced by near ultraviolet radiation in Escherichia coli B and its role in photoprotection and liquid holding recovery. Photochem. Photobiol. 3, 11–24 (1964).CrossRefGoogle Scholar
  35. Johns, H. E., S. A. Rapaport, and M. Delbrück: Photochemistry of thymine dimers. J. molec. Biol. 4, 104–114 (1962).PubMedCrossRefGoogle Scholar
  36. Kassanis, B., and A. Kleczkowski: Inactivation of a strain of tobacco necrosis virus and of the RNA isolated from it, by ultraviolet radiation of different wave-lengths. Photochem. Photobiol. 4, 209–214 (1965).CrossRefGoogle Scholar
  37. Kelner, A.: Effect of visible light on the recovery of streptomyces griseus conidia from ultra-violet irradiation injury. Proc. nat. Acad. Sci. (Wash.) 35, 73–79 (1949).CrossRefGoogle Scholar
  38. Lerman, L. S.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 18–30 (1961).PubMedCrossRefGoogle Scholar
  39. Marmur, J., and L. Grossman: Ultraviolet light induced linking of deoxyribonucleic acid strands and its reversal by photoreactivating enzyme. Proc. nat. Acad. Sci. (Wash.) 47, 778–787 (1961).CrossRefGoogle Scholar
  40. McLaren, A. D., and D. Shugar: Photochemistry of proteins and nucleic acids. Oxford: Pergamon Press 1964.Google Scholar
  41. Merriam, V., and M. P. Gordon: Pyrimidine dimer formation in ultraviolet irradiated TMV-RNA. Photochem. Photobiol. 6, 309–319 (1967).PubMedCrossRefGoogle Scholar
  42. Muhammed, A.: Studies on the yeast photoreactivating enzyme. J. biol. Chem. 241, 516–523 (1966).PubMedGoogle Scholar
  43. Pearson, M. L., and H. E. Johns: Suppression of hydrate and dimer formation in ultraviolet-irradiated Poly (A + U) relative to Poly U. J. molec. Biol. 20, 215–229 (1966).PubMedCrossRefGoogle Scholar
  44. Pearson, M. L., F. P. Ottensmeyer, and H. E. Johns: Properties of an unusual photoproduct of U.V. irradiated thymidylyl-thymidine. Photochem. Photobiol. 4, 739–747 (1965).PubMedCrossRefGoogle Scholar
  45. Rauth, A. M.: The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. Biophys. J. 5, 257–273 (1965).PubMedCrossRefGoogle Scholar
  46. Regan, J. D., and J. S. Cook: Photoreactivation in an established vertebrate cell line. Proc. nat. Acad. Sci. (Wash.) 58, 2274–2279 (1967).CrossRefGoogle Scholar
  47. Rupert, C. S.: Photoreactivation of transforming DNA by an enzyme from Baker’s yeast. J. gen. Physiol. 43, 573–595 (1960a).PubMedCrossRefGoogle Scholar
  48. Rupert, C. S.: In: The comparative effects of radiation. New York: John Wiley & Sons 1960b.Google Scholar
  49. Rupert, C. S.: Repair of ultraviolet damage in cellular DNA. J. cell. comp. Physiol. 58, Suppl. 1, 57–68 (1961).PubMedCrossRefGoogle Scholar
  50. Rupert, C. S.: Photoenzymatic repair of ultraviolet damage in DNA. I. Kinetics of the reaction. J. gen. Physiol. 45, 703–724 (1962a).Google Scholar
  51. Rupert, C. S.: Photoenzymatic repair of ultraviolet damage in DNA. II. Formation of an enzyme substrate complex. J. gen. Physiol. 45, 725–741 (1962b).PubMedCrossRefGoogle Scholar
  52. Rupert, C. S.: Photoreactivation of ultraviolet damage. In: Photophysiology, vol. II. New York: Academic Press 1964 a.Google Scholar
  53. Rupert, C. S.: Questions regarding the presumed role of thymine dimer in photoreactivable U.V. damage to DNA. Photochem. Photobiol. 3, 399–403 (1964b).CrossRefGoogle Scholar
  54. Rupert, C. S.: Relation of photoreactivation to photoenzymatic repair of DNA in Escherichia coli. Photochem. Photobiol. 4, 271–275 (1965).CrossRefGoogle Scholar
  55. Rupert, C. S.: 1966 Diskussionsbemerkung. Zit. in J. K. Setlow 1966 a.Google Scholar
  56. Rupert, C. S., S. H. Goodgal, and R. M. Herriott: Photoreactivation in vitro of ultraviolet inactivated hemophilus influenzae transforming factor. J. gen. Physiol. 41, 451–471 (1958).PubMedCrossRefGoogle Scholar
  57. Rupert, C. S., and W. Harm: Reactivation of photobiological damage. In: Advances in radiation biology, vol. II. New York: Academic Press 1966.Google Scholar
  58. Rupp, W. D., and P. Howard-Flanders: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. molec. Biol. 31, 291–304 (1968).PubMedCrossRefGoogle Scholar
  59. Rushizky, G. W., C. A. Knight, and A. D. McLaren: A comparison of the ultraviolet-light inactivation of infectious ribonucleic acid preparations from tobacco mosaic virus with those of the native and reconstituted virus. Virology 12, 32–47 (1960).PubMedCrossRefGoogle Scholar
  60. Sanderson, J. A., and E. O. Hulburt: Sunlight as a source of radiation. In: Radiation biology, vol. II. New York: McGraw-Hill Book Co. 1955.Google Scholar
  61. Sarin, P. S., and H. E. Johns: U.V. induced conformational changes in transfer RNA. Photochem. Photobiol. 7, 203–210 (1968).PubMedCrossRefGoogle Scholar
  62. Schuster, H.: Photochemie von Ribonucleinsäuren. Z. Naturforsch. 19b, 815–830 (1964).Google Scholar
  63. Setlow, J. K.: The wavelength-dependent fraction of biological damage due to thymine dimers and to other types of lesion in ultraviolet-irradiated DNA. Photochem. Photobiol. 2, 393–399 (1963).CrossRefGoogle Scholar
  64. Setlow, J. K.: Photoreactivation. Radiat. Res., Suppl. 6, 141–155 (1966a).CrossRefGoogle Scholar
  65. Setlow, J. K.: The molecular basis of biological effects of ultraviolet radiation and photoreactivation. In: Current topics in radiation research, vol. II. Amsterdam: North-Holland Publ. Co. 1966b.Google Scholar
  66. Setlow, J. K., and M. E. Boling: The action spectrum of an in vitro DNA photoreactivation system. Photochem. Photobiol. 2, 471–477 (1963).CrossRefGoogle Scholar
  67. Setlow, J. K., and M. E. Boling, and F. J. Bollum: The chemical nature of photoreactivable lesions in DNA. Proc. nat. Acad. Sci. (Wash.) 53, 1430–1436 (1965).CrossRefGoogle Scholar
  68. Setlow, J. K., and F. J. Bollum: The minimum size of the substrate for yeast photoreactivating enzyme. Biochim. biophys. Acta (Amst.) 157, 233–237 (1968).Google Scholar
  69. Setlow, J. K., and R. B. Setlow: Nature of the photoreactivable ultra-violet lesion in deoxyribonucleic acid. Nature (Lond.) 197, 560–562 (1963).CrossRefGoogle Scholar
  70. Setlow, J. K., and R. B. Setlow: Contribution of dimers containing cytosine to ultra-violet inactivation of transforming DNA. Nature (Lond.) 213, 907–909 (1967).CrossRefGoogle Scholar
  71. Setlow, R. B.: Physical changes and mutagenesis. J. cell. comp. Physiol. 64, Suppl. 1, 51–68 (1964).CrossRefGoogle Scholar
  72. Setlow, R. B.: Repair of DNA. In: Regulation of nucleic acid and protein biosynthesis. Amsterdam: Elsevier Publ. Co. 1967.Google Scholar
  73. Setlow, R. B., and W. L. Carrier: The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc. nat. Acad. Sci. (Wash.) 51, 226–231 (1964).CrossRefGoogle Scholar
  74. Setlow, R. B., and W. L. Carrier: Pyrimidine dimers in ultraviolet-irradiated DNA’s. J. molec. Biol. 17, 237–254 (1966).PubMedCrossRefGoogle Scholar
  75. Setlow, R. B., and W. L. Carrier: Formation and destruction of pyrimidine dimers in polynucleotides by ultraviolet irradiation in the presence of proflavine. Nature (Lond.) 213, 906–907 (1967).CrossRefGoogle Scholar
  76. Setlow, R. B., and W. L. Carrier, and F. J. Bollum: Pyrimidine dimers in UV-irradiated Poly dI:dC. Proc. nat. Acad. Sci. (Wash.) 53, 1111–1118 (1965).CrossRefGoogle Scholar
  77. Setlow, R. B., and J. K. Setlow: Evidence that ultraviolet-induced dimers in DNA cause damage. Proc. nat. Acad. Sci. (Wash.) 48, 1250–1257 (1962).CrossRefGoogle Scholar
  78. Setlow, R. B., P. A. Swenson, and W. L. Carrier: Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells. Science 142, 1464–1465 (1963).PubMedCrossRefGoogle Scholar
  79. Siegel, A., S. G. Wildman, and W. Ginoza: Sensitivity to ultra-violet light of infectious tobacco mosaic virus nucleic acid. Nature (Lond.) 178, 1117–1118 (1956).CrossRefGoogle Scholar
  80. Small, G. D., and M.P. Gordon: Prevention of photoreactivation of tobacco mosaic virus-ribonucleic acid by reconstitution. Photochem. Photobiol. 6, 303–308 (1967).PubMedCrossRefGoogle Scholar
  81. Stahl, F. W., J. M. Craseman, L. Okun, E. Fox, and C. Laird: Radiation-sensitivity of bacteriophage containing 5-bromo-deoxyuridine. Virology 13, 98–104 (1961).CrossRefGoogle Scholar
  82. Stretter, D. G., and M. P. Gordon: Ultraviolet photoinactivation studies on hybrid viruses obtained by cross-reconstitution of the protein and RNA components of U(l) and U(2) strains of TMV. Photochem. Photobiol. 6, 413–421 (1967).CrossRefGoogle Scholar
  83. Terry, C. E., and J. K. Setlow: Photoreactivating enzyme from neurospora crassa. Photochem. Photobiol. 6, 799–803 (1967).PubMedCrossRefGoogle Scholar
  84. Wacker, A.: Molecular mechanisms of radiation effects. In: Progress in nucleic acid research, vol. I. New York: Academic Press 1963.Google Scholar
  85. Wang, S. Y., and R. Alcántara: The possible formation of dithymine peroxyde in irradiated DNA. Photochem. Photobiol. 4, 477–481 (1965).CrossRefGoogle Scholar
  86. Wang, S. Y., and A. J. Varghese: Cytosine-thymine addition product from DNA irradiated with ultraviolet light. Biochem. biophys. Res. Commun. 29, 543–549 (1967).PubMedCrossRefGoogle Scholar
  87. Weatherwax, R. S.: Desensitization of Escherichia coli to ultraviolet light. J. Bact. 72, 124–125 (1956).PubMedGoogle Scholar
  88. Weinblum, D.: Characterization of the photodimers from DNA. Biochem. biophys. Res. Commun. 27, 384–390 (1967).PubMedCrossRefGoogle Scholar
  89. Weinblum, D., and H. E. Johns: Isolation and properties of isomeric thymine dimers. Biochim. biophys. Acta (Amst.) 114, 450–459 (1966).Google Scholar
  90. Werbin, H., and C. S. Rupert: Presence of photoreactivating enzyme in blue-green algal cells. Photochem. Photobiol. 7, 225–230 (1968).PubMedCrossRefGoogle Scholar
  91. Werbin, H., R. C. Valentine, O. Hildalgo-Salvatierra, and A. D. McLaren: Photobiology of RNA bacteriophages-II. U.V. irradiation of f2: effects on extracellular stages of infection and on early replication. Photochem. Photobiol. 7, 253–261 (1968).PubMedCrossRefGoogle Scholar
  92. Werbin, H., R. C. Valentine, and A.D. McLaren: Photobiology of RNA bacteriophages-I. Ultraviolet inactivation and photoreactivation studies. Photochem. Photobiol. 6, 205–213 (1967).CrossRefGoogle Scholar
  93. Wierzchowski, K. L., and D. Shugar: Photochemistry of model oligo- and polynucleotides- IV. Hetero-oligonucleotides and high molecular weight single and twin-stranded polymer chains. Photochem. Photobiol. 1, 21–36 (1962).CrossRefGoogle Scholar
  94. Winkler, U.: Über die fehlende Photo- und Wirtszellenreaktivierbarkeit des UV-inaktivierten RNS-Phagen fr. Photochem. Photobiol. 3, 37–43 (1964).CrossRefGoogle Scholar
  95. Winkler, U., H. E. Johns, and E. Kellenberger: Comparative study of some properties of bacteriophage T4D irradiated with monochromatic ultraviolet light. Virology 18, 343–358 (1962).PubMedCrossRefGoogle Scholar
  96. Wittmann-Liebold, B., and H. G. Wittmann: Coat proteins of strains of two RNA viruses: comparison of their amino acid sequences. Molec. Gen. Genetics 100, 358–363 (1967).CrossRefGoogle Scholar
  97. Wulff, D. L., and C. S. Rupert: Disappearance of thymine photodimer in ultraviolet irradiated DNA upon treatment with a photoreactivating enzyme from Baker’s yeast. Biochem. biophys. Res. Commun. 7, 237–240 (1962).PubMedCrossRefGoogle Scholar
  98. Yamane, T., B. J. Wyluda, and R. G. Shulman: Dihydrothymine from UV-irradiated DNA. Proc. nat. Acad. Sci. (Wash.) 58, 439–442 (1967).CrossRefGoogle Scholar
  99. Zamenhof, S., B. Reiner, R. de Giovanni, and K. Rich: Introduction of unnatural pyrimidines into deoxyribonucleic acid of Escherichia coli. J. biol. Chem. 219, 165–173 (1956).PubMedGoogle Scholar
  100. Zinder, N. D.: RNA phages. In: Ann. review microbiology, vol.19. Palo Alto: Annual Reviews, Inc. 1965.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1969

Authors and Affiliations

  • Heinz Schuster
    • 1
  1. 1.Max-Planck-Institut für Molekulare Genetik BerlinDahlemGermany

Personalised recommendations