The Influence of the Neurohypophysial Hormones and Similar Polypeptides on the Kidneys

  • Niels A. Thorn
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 23)


Several aspects concerning the subject of the present section have been dealt with in a number of previous reviews (Berde, 1963; Dicker, 1961, 1964; Heller, 1951, 1955, 1957; Lipsett, Schwartz and Thorn, 1961; Nielsen, 1964; Pick-ford, 1966; Sawyer, 1961a, b,c, 1963, 1966; Schwartz and Livingston, 1964; Rudinger, 1964a,b; Thorn, 1958, 1960a; Thorp, 1962; Ussing et al, 1960).


Diabetes Insipidus Nephrogenic Diabetes Insipidus Distal Convoluted Tubule Proximal Convoluted Tubule Toad Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbrecht, P. H., and R.L. Malvin: Flow rate of urine as a determinant of renal counter-current multiplier system. Amer. J. Physiol. 199, 919–922 (1960).PubMedGoogle Scholar
  2. —: Effects of GFR and renal plasma flow on urine osmolarity. Amer. J. Physiol. 201, 754–758 (1961).PubMedGoogle Scholar
  3. Abdttl-Karim, R., and N.S. Assali: Renal function in human pregnancy. V. Effects of oxy-tocin on renal hemodynamics and water and electrolyte excretion. J. Lab. clin. Med. 57, 522–532 (1961).Google Scholar
  4. Abrahams, C.V., and M. Pickford: The effect of 5-hydroxytryptamine on the urethra and on the blood pressure of dogs, and of adrenaline, noradrenaline and posterior pituitary extract on the urethra. Brit. J. Pharmacol. 11, 44–49 (1956).PubMedGoogle Scholar
  5. Adamsons, K. Jr., S.L. Engel, and H.B. Van Dyke: The stability of natural and synthetic neurohypophysial hormones in vitro. Endocrinology 63, 679–681 (1958).CrossRefPubMedGoogle Scholar
  6. Ahmed, A.B. J., B.C. George, C. Gonzales-Auvert, and J.F. Dingman: Increased plasma arginine vasopressin in clinical adrenocortical insufficiency and its inhibition by gluco-steroids. J. clin. Invest. 46, 111–123 (1967).CrossRefPubMedGoogle Scholar
  7. Aikawa, J.K., and J.P. Pilliod: Changes in renal tissue composition induced in rabbits by various intravenous doses of mercaptomerin sodium. Proc. Soc. exp. Biol. (N.Y.) 101, 61–66 (1959).Google Scholar
  8. Albers, R.W., and M.W. Brightman: A major component of neurohypophysial tissue associated with antidiuretic activity. J. Neurochem. 3, 269–276 (1959).CrossRefPubMedGoogle Scholar
  9. Albright, F., and F.C. Bartter: The effects of anterior pituitary adrenocorticotropic hormone (ACTH) on bone metabolism. Transactions of the 2nd Conf. on Metabolic Interrelations. New York: J. Macy Found. 1950.Google Scholar
  10. Alexander, C.: The effect of 3′,5′-cyclic AMP and other nucleotides on urine flow and hemodynamics in the rat. J. clin. Invest. 44, 1025 (1965).CrossRefGoogle Scholar
  11. Alexander, C.S.: Production of diabetes insipidus in the rat. Proc. Soc. exp. Biol. (N.Y.) 99, 142–146 (1958).Google Scholar
  12. —, and D.M. Filbin: Failure of vasopressin to produce normal urine concentration in patients with diabetes insipidus. J. Lab. clin. Med. 54, 566–571 (1959).PubMedGoogle Scholar
  13. Ali, M. N.: A comparison of some activities of arginine vasopressin and lysine vasopressin on kidney function in conscious dogs. Brit. J. Pharmacol. 13, 131–137 (1958).PubMedGoogle Scholar
  14. —, R. B. Cross, and M. Pickford: Electrolyte excretion in diuretic and non-diuretic dogs. J. Physiol. (Lond.) 41, 177–182 (1958).Google Scholar
  15. Ames, R.G., D.H. Moore, and H.B. Van Dyke: The excretion of posterior pituitary anti-diuretic hormone in the urine and its detection in the blood. Endocrinology 46, 215–227 (1950).CrossRefGoogle Scholar
  16. Anderson, W.A., and E. Brown: The influence of arginine vasopressin on the production of adenosine 3′,5′-monophosphate by adenyl cyclase from the kidney. Biochim. biophys. Acta (Amst.) 67, 674–676 (1963).CrossRefGoogle Scholar
  17. Andersson, B., and N. Persson: Intravenous assay of antidiuretic hormone using the goat. Acta physiol. scand. 42, 257–261 (1958).CrossRefPubMedGoogle Scholar
  18. Angervall, L., L. Lehmann, and U. Bengtsson: The renal concentrating capacity in albino rats after long-term consumption of phenacetin, napa and acetylsalicylic acid. Acta med. scand. 175, 155–160 (1964).CrossRefPubMedGoogle Scholar
  19. Anselmino, K.J., F. Hoffmann, and W.P. Kennedy: The relation of hyperfunction of the posterior lobe of the hypophysis to ecclampsia and nephropathy of pregnancy. Edinb. med. J. 39, 376–388 (1932).Google Scholar
  20. Anslow, W.P., and L.G. Wesson Jr.: Some effects of pressor-antidiuretic and oxytocic fractions of posterior pituitary extract on sodium, chloride, potassium and ammonium excretion in the dog. Amer. J. Physiol. 182, 561–566 (1955).PubMedGoogle Scholar
  21. Appelboom, J.W., W.A. Brodsky, and W.N. Scott: Effect of osmotic diuresis on intrarenal solutes in diabetes indipidus and hydropenia. Amer. J. Physiol. 208, 38–45 (1965).PubMedGoogle Scholar
  22. Ashman, D.F., R. Lipton, M. Melicow, and T.D. Proce: Isolation of adenosine 3′,5′-mono-phosphate and guanosine 3’,5’-monophosphate from rat urine. Biochem. biophys. Res. Com. 11, 330 (1963).CrossRefPubMedGoogle Scholar
  23. Assali, N.S., W. J. Dignam, and L. Longo: Renal function in human pregnancy. III. Effects of antidiuretic hormone (ADH) on renal hemodynamics and water and electrolyte excretion near term and post partum. J. clin. Endocr. 20, 581–592 (1960).CrossRefPubMedGoogle Scholar
  24. Atherton, J.C., M.A. Hai, and S. Thomas: Transient saluresis due to lysine-vasopressin administration in the conscious water diuretic rat. J. Physiol. (Lond.) 190, 30–31 P (1967).Google Scholar
  25. Au, W.Y.W., and L.G. Raisz: Studies on the renal concentrating mechanism. V. Effect of diuretic agents. J. clin. Invest. 39, 1302–1311 (1960).CrossRefPubMedGoogle Scholar
  26. Aukland, K.: Studies of renal circulation with inert gas. Measurements in tissue. Proc. 3rd Congr. Nephrol. Washington 1966.Google Scholar
  27. —, and R.W. Berliner: Renal medullary countercurrent system studied with hydrogen gas. Circulat. Res. 15, 430–442 (1962).CrossRefGoogle Scholar
  28. —, and J. Kjekshus: Tubular salt and water transport in hydrated dogs studied with push-flow technique. Amer. J. Physiol. 210, 971–979 (1966).PubMedGoogle Scholar
  29. Baer, J.E., A.V. Brooks, R.M. Noll, and K.B. Beyer: Effect of hydrochlorothiazide on renal electrolyte gradient in glucose diuresis and experimental diabetes insipidus. J. Pharmacol, exp. Ther. 137, 319–323 (1962).Google Scholar
  30. Bahlmann, J., J.G. Giebisch, B. Ochwadt, and W. Schoeppe: Micropuncture study of isolated perfused rat kidney. Amer. J. Physiol. 212, 77–82 (1967).PubMedGoogle Scholar
  31. Baker, G.P., H. Levitin, and F.H. Epstein: Sodium depletion and renal conservation of water. J. clin. Invest. 40, 867–873 (1961).CrossRefPubMedGoogle Scholar
  32. Bank, N., and H.S. Aynedjian: A micropuncture study of the renal concentrating defect of potassium depletion. Amer. J. Physiol. 206, 1347–1354 (1964).PubMedGoogle Scholar
  33. Baratz, R. A., A. Doig, and I. J. Adatto: Plasma antidiuretic activity and free water clearance following osmoreceptor and neurohypophyseal stimulation in human subjects. J. clin. Invest. 39, 1539–1545 (1960).CrossRefPubMedGoogle Scholar
  34. —, and R. C. Ingraham: Sensitive bioassay method for measuring antidiuretic hormone in mammalian plasma. Proc. Soc. exp. Biol. (N.Y.) 100, 296–299 (1959).Google Scholar
  35. Barclay, J.A., R.F. Crampton, and D.M. Matthews: Henle’s loop and the sodium content of the medullae of mammalian kidneys. J. Physiol. (Lond.) 147, 48 P (1959).Google Scholar
  36. Barer, G. R.: The action of vasopressin, a vasopressin analogue (PLV2) oxytocin, angiotensin, bradykinin and theophylline ethylene diamine on renal blood flow in the anaesthetized cat. J. Physiol. (Lond.) 169, 62–72 (1963).Google Scholar
  37. Barger, A.C., R.D. Berlin, and J.F. Tulenko: Infusion of aldosterone, 9-fluorohydrocorti-sone and antidiuretic hormone into the renal artery of normal and adrenalectomized, Tin-anesthetized dogs. Effect on electrolyte and water excretion. Endocrinology 62, 804–815 (1958).CrossRefPubMedGoogle Scholar
  38. Barltrop, D.: Diabetes insipidus treated with synthetic lysine vasopressin. Lancet 1963, 176-278.Google Scholar
  39. Barnafi, L., R. Rosas, M. De la Lastra, and H. Croxatto: Influence of oxytocin and vasopressin on sodium-retaining activity of aldosterone in the rat. Amer. J. Physiol. 198, 255–259 (1960).PubMedGoogle Scholar
  40. —, T. Pereda, and H. Croxatto: Effect of vasopressin structural modifications on rat renal excretion of Na, K and water. Amer. J. Physiol. 202, 593–596 (1962).PubMedGoogle Scholar
  41. Barnett, H.L., C.W. Forman, and H.D. Lauson: The nephrotic syndrome in children. Advanc. Pediat. 5, 53–128 (1952).Google Scholar
  42. Barth, T., W. Pliska, and I. Rychlik: Chymotryptic and tryptic cleavage of oxytocin and vasopressin. Collection Czech. Chem. Commun. 32, 1058–1063 (1967).CrossRefGoogle Scholar
  43. Bartter, F. C., and W. B. Schwartz: The syndrome of inappropriate secretion of antidiuretic hormone. Amer. J. Med. 42, 790–806 (1967).CrossRefPubMedGoogle Scholar
  44. Battman, J.W.: Effect of hypophysectomy on the renal concentrating ability of the rat. Endocrinology 77, 496–500 (1965).CrossRefGoogle Scholar
  45. —, C. Guyot-Jeannin, and J. Dobrowolski: Nutritional state and urine concentrating ability in the rat. J. Endocrin. 30, 147–148 (1964).CrossRefGoogle Scholar
  46. Bentley, P.J.: The effects of neurohypophyseal extracts on water transfer across the wall of the isolated urine bladder of the toad, bufo marinus. J. Endocr. 17, 201–209 (1958).CrossRefPubMedGoogle Scholar
  47. —: The effects of ionic changes on water transfer across the isolated urinary bladder of the toad bufo marinus. J. Endocr. 18, 327–333 (1959).CrossRefGoogle Scholar
  48. — Neurohypophysial function in amphibians, reptiles and birds. Symp. Zool. Soc. London 9, 141–152 (1963).Google Scholar
  49. Beránková-Ksandrová, Z., G.W. Bisset, K. Jost, I. Krejci, V. Pliska, J. Rttdinger, I. Rychltk, and F. Sorm: Synthetic analogues of oxytocin acting as hormonogens. Brit. J. Pharmacol. 26, 615–632 (1966).PubMedGoogle Scholar
  50. Berde, B.: Pharmacologie des hormones neurohypophysaires. Paris: Masson & Cie 1963.Google Scholar
  51. —: Les analogues synthetique des hormones neurohypophysaires sont-ils une clef de l’étude des troubles de l’hormonogenese de ce systeme? Rapport de la VIIIe reunion des endocrinologistes de langue française, p. 33-49 (1965).Google Scholar
  52. —, and R. A. Boissonnas: Synthetic analogues and homologues of the posterior pituitary gland. In: The pituitary gland. Ed. by G. W. Harris and B.T. Donovan. London: Butter-worths 1966.Google Scholar
  53. —, u. A. Cerletti: Über die antidiuretische Wirkung von synthetischem Lysin-Vasopressin. Helv. physiol. pharmacol. Acta 19, 135–150 (1961).Google Scholar
  54. —: Medizinische und biologische Aspekte von pharmakologischen Arbeiten mit synthetischen Peptiden von neurohypophysärem Typus. Klin. Wschr. 42, 1159–1165 (1964).CrossRefPubMedGoogle Scholar
  55. —, W. Doepfner, and H. Konzett: Some pharmacological actions of four synthetic analogues of oxytocin. Brit. J. Pharmacol. 12, 209–214 (1957).PubMedGoogle Scholar
  56. —, u. A. Cerletti: Über Phenylalanin2-Lysin-Vasopressin. Helv. physiol. pharmacol. Acta 19, 285–302 (1961).PubMedGoogle Scholar
  57. Berliner, R.W., and C.M. Bennett: Concentration of urine in the mammalian kidney. Amer. J. Med. 42, 777–789 (1967).CrossRefPubMedGoogle Scholar
  58. —, and D. G. Davidson: Production of hypertonic urine in the absence of pituitary anti-diuretic hormone. J. clin. Invest. 36, 1416–1427 (1957).CrossRefPubMedGoogle Scholar
  59. —, N. Levinsky, D. G. Davidson, and M. Eden: Dilution and concentration of the urine and the action of antidiuretic hormone. Amer. J. Med. 24, 730–744 (1958).CrossRefPubMedGoogle Scholar
  60. Berlyne, G.M., and A. Macken: On the mechanism of renal inability to produce a concentrated urine in chronic hydronephrosis. Clin. Sci. 22, 315–324 (1962).PubMedGoogle Scholar
  61. —, S. Nilwarangkur, K. Janabi, and M. Cooper: Nocturnal nephrogenic diabetes insipidus. Quart. J. Med. 34, 463–479 (1965).PubMedGoogle Scholar
  62. Bickford, R.G., and F.R. Winton: The influence of temperature on the isolated kidney of the dog. J. Physiol. (Lond.) 89, 198–219 (1937).Google Scholar
  63. Binkley, F., and G.M. Christensen: An effect of vasopressin on renal weight. Endocrinology 64, 307–308 (1959).CrossRefPubMedGoogle Scholar
  64. Birnie, J.H., W.J. Eversole, W.R. Boss, CM. Osborn, and R. Gaunt: An antidiuretic substance in the blood of normal and adrenalectomized rats. Endocrinology 47,1–12 (1950).CrossRefPubMedGoogle Scholar
  65. Bisset, G.W.: Effect of tyrosinase preparations on oxytocin, vasopressin and bradykinin. Brit. J. Pharmacol. 18, 405–420 (1962).PubMedGoogle Scholar
  66. Black, D.A.K.: Renal rete mirabile. Lancet 1965, 1141-1152.Google Scholar
  67. —, and A. E. Thomson: Day-to-day changes in sodium and water output with and without posterior pituitary extract. Clin Sci. 10, 511–520 (1951).Google Scholar
  68. Boba, A., and S.R. Powers: Mannitol-vasopressin in the splenectomized dog. J. surg. Res. 6, 265–273 (1966).CrossRefPubMedGoogle Scholar
  69. Bocanegra, M., and H.D. Lauson: Ultrafilterability of endogenous antidiuretic hormone from plasma of dogs. Amer. J. Physiol. 200, 486–493 (1961).Google Scholar
  70. Boissonnas, R. A., St. Guttman, B. Berde, and H. Konzett: Relationship between the chemical structures and the biological properties of the posterior pituitary hormones and their synthetic analogues. Experientia (Basel) 17, 377–391 (1961).CrossRefGoogle Scholar
  71. Bojesen, E.: Den tubulaere saltvandsresorption. Kobenhavn: Christtreus 1955.Google Scholar
  72. Boss, J.M.N., H. Dlouha, M. Kraus, and J. Krecek: The development of the kidney in young rats. J. Physiol. (Lond.) 161, 51-52 P (1962).Google Scholar
  73. Boura, A., and S. E. Dicker: An apparatus for the maintenance of a constant water load and the recording of urine flow in rats. J. Physiol. (Lond.) 122, 144–148 (1953).Google Scholar
  74. Bower, B.F., and G.S. Gordon: Hormonal effects of nonendocrine tumors. Ann. Rev. Med. 16, 83–118 (1965).CrossRefPubMedGoogle Scholar
  75. —, D. M. Mason, and P. H. Forsham: Bronchogenic carcinoma with inappropriate antidiuretic activity in plasma and tumor. New Engl. J. Med. 271, 934–938 (1964).CrossRefPubMedGoogle Scholar
  76. Boylan, J. W., and E. Asshatjer: Depletion and restoration of the medullary osmotic gradient in the dog kidney. Pflügers Arch. ges. Physiol. 276, 99–116 (1962).CrossRefGoogle Scholar
  77. Bozler, E.: Osmotic effects and diffusion of nonelectrolytes in muscle. Amer. J. Physiol. 197, 505–510 (1959).PubMedGoogle Scholar
  78. Branda, L. A., and V. Du Vigneaud: Synthesis and pharmacological properties of 9-decar-boxamido-oxytocin. J. med. pharm. Chem. 9, 169–172 (1966).CrossRefGoogle Scholar
  79. Bray, G.A.: Distribution of urea, thiourea-C14 and sucrose-C14 in dog kidney during anti-diuresis. Amer. J. Physiol. 199, 1211–1214 (1960).Google Scholar
  80. —: Freezing point depression of rat kidney slices during water diuresis and antidiuresis. Amer. J. Physiol. 199, 915–918 (1960).Google Scholar
  81. Brodehl, J.A., K. Gellissen, u. W. Hagge: Die Wirkung des Vasopressins beim Diabetes Insipidus Renalis. Klin. Wschr. 43, 72–78 (1965).CrossRefPubMedGoogle Scholar
  82. Brook, A.H., and L. Share: On the question of protein binding and the diffusibility of circulating antidiuretic hormone in the dog. Endocrinology 78, 779–785 (1966).CrossRefPubMedGoogle Scholar
  83. Brooks, F.P., and M. Pickford: The effect of posterior pituitary hormones on the excretion of electrolytes in dogs. J. Physiol. (Lond.) 142, 468–493 (1958).Google Scholar
  84. Brown, E., D.L. Clarke, V. Roux, and G.H. Sherman: The stimulation of adenosine 3′,5′-monophosphate production by antidiuretic factors. J. biol. Chem. 238, PC852–PC853 (1963).Google Scholar
  85. Brown, J.H.U., and A.A. Petkas: The behavior of kidney mitochondria under the influence of ADH. Endocrinology 69, 182–183 (1961).CrossRefGoogle Scholar
  86. Brun, C., E.O.E. Knudsen, and F. Raaschou: On the cause of postsyncopal oliguria. Acta med. scand. 122, 486–500 (1945).CrossRefPubMedGoogle Scholar
  87. Brunner, F.P., and D.W. Seldin: The mechanism of the urinary concentrating defect in potassium dificient rats. Pflügers Arch. ges. Physiol. 290, 202–210 (1966).CrossRefGoogle Scholar
  88. Brunner, H., G. Kuschinsky, O. Münchow, u. G. Peters: Der Einfluß von Oxytocin auf Diurese und Salzausscheidung bei Ratte und Mensch. Klin. Wschr. 34, 451–452 (1956).CrossRefPubMedGoogle Scholar
  89. Buchborn, E.: Ein quantitativer biologischer Adiuretin-(Vasopressin-)Nachweis an der Kröte. Z. ges. exp. Med. 125, 614–625 (1955).CrossRefPubMedGoogle Scholar
  90. —: Klinische Pathophysiologie der Harnkonzentrierung. Schweiz, med. Wschr. 94, 1273–1283 (1964).Google Scholar
  91. Bucher, O. Von, u. PH. Grand Jean: Zur Frage der Angriffspunkte des antidiuretischen Hormons in der Niere. Z. Biol. 113, 67–76 (1961).PubMedGoogle Scholar
  92. Buckalew, V.M., M.A. Ramirez, and M. Goldberg: Free water reabsorption during solute diuresis in normal and potassium depleted rats. Amer. J. Physiol. 212, 381–386 (1967).PubMedGoogle Scholar
  93. Bulger, R.E., L.D. Griffith, and B.F. Trump: Endoplasmic reticulum in rat renal interstitial cells. Molecular rearrangement after water deprivation. Science 151, 83–86 (1966).CrossRefPubMedGoogle Scholar
  94. Burn, H.: Estimation of the antidiuretic potency of pituitary (posterior lobe) extract. Quart. J. exp. Biol. (N.Y.) 4, 517–529 (1931).Google Scholar
  95. Capek, K., G. Fuchs, G. Rumrich, u. K.J. Ullrich: Harnstoffpermeabilität der corticalen Tubulusabschnitte von Ratten in Antidiurese und Wasserdiurese. Pflügers Arch. ges. Physiol. 290, 237–249 (1966).CrossRefGoogle Scholar
  96. Carasso, N., P. Favard, J. Bourguet, et S. Jard: Role du flux net d’eau dans les modifications ultrastructurales de la vessie de grenouille stimulée par l’oxytocine. J. Microsc. 5, 519–522 (1966).Google Scholar
  97. —, and J. Valerien: Variations des ultrastructure dans les cellules epitheliales de la vessie du crapaud apres stimulation par l’hormone neurohypophysaires. J. Microscopie 1,143–158 (1962).Google Scholar
  98. Carone, F. A., and F.H. Epstein: Nephrogenic diabetes insipidus caused by amyloid disease. Amer. J. Med. 29, 539–544 (1960).CrossRefPubMedGoogle Scholar
  99. —, B. A. Everett, N. J. Blondeel, and M. Goldberg: Renal localization of albumin and its function in the concentrating mechanism. Amer. J. Physiol. 212, 387 (1967-393).PubMedGoogle Scholar
  100. Chabria, N.L., and B.B. Gaitonde: Effect of dexamethasone on urine output and electrolyte excretion in rats. Arch. int. Pharmacodyn. 162, 364–370 (1966).PubMedGoogle Scholar
  101. Chalmers, T. M., A. A. G. Lewis, and G. L. S. Pawan: The effect of posterior pituitary extracts on the renal excretion of sodium and chloride in man. J. Physiol. (Lond.) 112, 238–242 (1951).Google Scholar
  102. Chan, W. Y.: Effects of neurohypophysial hormones and their deamino analogues on renal excretion of Na, K and water in rats. Endocrinology 77, 1097–1104 (1965).CrossRefPubMedGoogle Scholar
  103. —, and H. Sawyer: Saluretic actions of neurohypophysial peptides in conscious dogs. Amer. J. Physiol. 201, 799–803 (1961).PubMedGoogle Scholar
  104. —, and W.H. Sawyer: Natriuresis in conscious dogs during arginine vasopressin infusion and after oxytocin injection. Proc. Soc. exp. Biol. (N.Y.) 110, 697–699 (1962).Google Scholar
  105. Chaudhury, R.R., and J.M. Walker: The fate of injected oxytocin in the rabbit. J. Endocr. 19, 189–192 (1959).CrossRefPubMedGoogle Scholar
  106. Chinard, F.P.: Kidney, water and electrolytes. Ann. Rev. Physiol. 26, 187–226 (1964).CrossRefGoogle Scholar
  107. Clapp, J. R.: Renal tubular reabsorption of urea in normal and protein-depleted rats. Amer. J. Physiol. 210, 1304–1308 (1966).PubMedGoogle Scholar
  108. —, and R.R. Robinson: Osmolality of distal tubular fluid in the dog. J. clin. Invest. 45, 1847–1853 (1966).CrossRefPubMedGoogle Scholar
  109. —, J. F. Watson, and R. W. Berliner: Osmolality, bicarbonate concentration and water reabsorption in proximal tubule of the dog nephron. Amer. J. Physiol. 205, 273–279 (1963).PubMedGoogle Scholar
  110. Crabbé, J.: The role of aldosterone in the renal concentration mechanism in man. Clin. Sci. 23, 39–46 (1962).PubMedGoogle Scholar
  111. —, and P. De Weer: Action of aldosterone and vasopressin on the active transport by the isolated toad bladder. J. Physiol. (Lond.) 180, 560–568 (1965).Google Scholar
  112. Cornil, A., J.C. Demant, P. Van Geel, et P.A. Bastenie: Syndrome de Schwartz Bartter au cours d’une porphyrie aigue intermittente. Acta clin. belg. 20, 286–299 (1965).PubMedGoogle Scholar
  113. Cort, J.H., J. Rudinger, B. Lichardus, and J. Hagemann: Effects of oxytocin antagonists on the saluresis accompanying carotid occlusion. Amer. J. Physiol. 210, 162–168 (1966).PubMedGoogle Scholar
  114. Crawford, R.F., A. Paresi, P. Meara, and M.L. Terry: Urine composition and renal tissue electrolytes. Amer. J. Dis. Child. 94, 512–513 (1957).Google Scholar
  115. —, and B. Pinkham: An assay method for antidiuretic hormone based on a more specific response index. Endocrinology 55, 521–529 (1954).CrossRefPubMedGoogle Scholar
  116. Cross, B.A., and G.W. Harris: The role of the neurohypophysis in the milk-ejection reflex. J. Endocr. 8, 148–161 (1952).CrossRefPubMedGoogle Scholar
  117. Cross, R.B.: The effects of osmotic diuresis and vasopressin upon the distribution of sodium, potassium and urea in the rat kidney. Aust. J. exp. Biol. med. Sci. 42, 523–538 (1964).CrossRefPubMedGoogle Scholar
  118. —, S.E. Dicker, A.H. Kitchin, S. Lloyd, and M. Pickford: The effect of oxytocin on urinary excretion of water and electrolytes in man. J. Physiol. (Lond.) 153, 553–561 (1960).Google Scholar
  119. —, E. Lee, and W.M. Thornton: The effect of vasopressin on urea excretion by the sheep. J. Physiol. (Lond.) 187, 34–35 (1966a).Google Scholar
  120. —, and L.A. Sherrington: The effect of vasopressin on water distribution in the rat kidney. Aust. J. exp. Biol. med. Sci. 43, 505–510 (1965).CrossRefPubMedGoogle Scholar
  121. —, and W.M. Thornton: The effect of vasopressin upon the distribution of serum albumin in the rat kidney. Aust. J. exp. Biol. med. Sci. 44, 137–142 (1966b).CrossRefPubMedGoogle Scholar
  122. —, W.M. Thornton, and E.D. Twedell: The effect of vasopressin on water and electrolyte excretion by the sheep. Aust. J. exp. Biol. med. Sei. 41, 629–636 (1963).CrossRefGoogle Scholar
  123. Croxatto, H., u. E. Labarca: Die Wirkung von synthetischem Oxytocin (Syntocinon) und Acetazolamid auf die Ausscheidung von Wasser, Natrium und Kalium. Experientia (Basel) 14, 339–341 (1958).CrossRefGoogle Scholar
  124. Curtis, J.R., and H.E. De Wardener: Effect of urine pH on the changes in urine concentration produced by vasopressin. Clin. Sei. 24, 159–166 (1963).Google Scholar
  125. Cutler, R.E., C.R. Kleemann, M.H. Maxwell, and J.T. Dowling: Physiologic studies in nephrogenic diabetes insipidus. J. clin. Endocr. 22, 827–838 (1962).CrossRefPubMedGoogle Scholar
  126. Czaczkes, J. W., M. Eliakim, and T.D. Ullman: Diminished antidiuretic response to pitressin in diabetes insipidus during the infusion of sodium bicarbonate solution. J. Lab. clin. Med. 57, 938–945 (1961).PubMedGoogle Scholar
  127. —, C. R. Kleeman, and M. Koenig: Physiologic studies of antidiuretic hormone by its direct measurement in human plasma. J. clin. Invest. 43, 1625–1640 (1964).CrossRefPubMedGoogle Scholar
  128. Dainty, J., and C.R. House: An examination of the evidence for membrane pores in frog skin. J. Physiol. (Lond.) 185, 172–241 (1966).Google Scholar
  129. Dale, H.: Evidence concerning the endocrine function of the neurohypophysis and its nervous control. In: The Neurohypophysis. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  130. Dalton, A.J., and F. Haguenau: Ultrastructure of the kidney. New York: Academic Press (1967).Google Scholar
  131. Daniel, J., u. F. Högler: Über die Diuresehemmung durch Pituitrinum infundibulare (in-fundibulin). Wien. Arch. inn. Med. 13, 481–508 (1927).Google Scholar
  132. Dantzler, W. H.: Renal response of chickens to infusion of hyperosmotic sodium chloride solution. Amer. J. Physiol. 210, 640–646 (1966).PubMedGoogle Scholar
  133. Darmady, E.M., and J. Durant, E.R. Matthews, and F. Stranack: Location of 131J Pitres-sin in the kidney by autoradiography. Clin. Sci. 19, 229–241 (1960).PubMedGoogle Scholar
  134. —, J. Offer, J. Prince, and F. Stanack: The proximal convoluted tubule in the renal handling of water. Lancet 1964, 1254-1257.Google Scholar
  135. Davey, M. J., and M.F. Lockett: Actions and interactions of aldosterone, monoacetate and neurohypophysial hormones on the isolated cat kidney. J. Physiol. (Lond.) 152, 206–219 (1960).Google Scholar
  136. David, M.A., u. K. Kovacs: Die Wirkung der Oestronbehandlung auf die antidiuretische Aktivität des Vasopressins. Endokrinologie 46, 217–223 (1964).PubMedGoogle Scholar
  137. Davis, B.B., F.G. Knox and R.W. Berliner: The effect of vasopressin on proximal tubule sodium reabsorption in the dog. Amer. J. Physiol. 212, 1361–1364 (1967).PubMedGoogle Scholar
  138. De Bodo, K.C., and K.F. Prescott: The antidiuretic action of barbiturates (phenobarbital, amytal, Pentobarbital) and the mechanism involved in this action. J. Pharmacol, exp. Ther. 85, 222–233 (1945).Google Scholar
  139. Deis, R.P., S. Lloyd, and M. Pickford: The effects of stilboestrol and progesterone and of renal denervation on the response of the kidney to vasopressin and oxytocin. J. Physiol. (Lond.) 165, 348–357 (1963).Google Scholar
  140. Del Greco, F., and H.E. De Wardener: The effect on urine osmolarity of a transient reduction in glomerular filtration rate and solute output during a water diuresis. J. Physiol. (Lond.) 131, 307–316 (1956).Google Scholar
  141. Demunbrun, T.W., A.D. Keller, A.H. Levkoff, and R.M. Pusser, Jr.: Pitocin restoration of renal hemodynamics to pre-neurohypophysectomy levels. Amer. J. Physiol. 179, 429–438 (1954).PubMedGoogle Scholar
  142. Dettelbach, H. R.: A method for assaying small amounts of antidiuretic substances with notes on some properties of vasopressin. Amer. J. Physiol. 192, 379–386 (1958).PubMedGoogle Scholar
  143. Deutsch, S., M. Goldberg, and R.D. Dripps: Postperative hyponatremia with the inappropriate release of antidiuretic hormone. Anesthesiology 27, 250–256 (1966).PubMedGoogle Scholar
  144. De Wardener, H.E.: Polyuria. J. chron. Dis. 2, 199–212 (1960).CrossRefGoogle Scholar
  145. —, and A. Herxheimer: The effect of a high water intake on the kidney’s ability to concentrate the urine in man. J. Physiol. (Lond.) 139, 42–52 (1957).Google Scholar
  146. De Wied, D.: A simple automatic and sensitive method for the assay of antidiuretic hormone with notes on the antidiuretic potency of plasma under different experimental conditions. Acta physiol. pharmacol. neerl. 9, 69–81 (1960).PubMedGoogle Scholar
  147. Diamond, J.M., and J. McD. Tormey: The role of long extracellular channels in fluid transport across epithelia. Nature (Lond.) 210, 817–820 (1966).CrossRefGoogle Scholar
  148. Dick, D.A.T.: Cell water. London: Butterworth 1966.Google Scholar
  149. Dicker, S.E.: A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titre of rat’s blood. J. Physiol. (Lond.) 122, 149–157 (1953).Google Scholar
  150. —: Release and metabolism of neurohypophyseal hormones. J. Pharm. Pharmacol. 13, 449–469 (1961).CrossRefPubMedGoogle Scholar
  151. —: The mechanism of action of oxytocin and vasopressin and their analogues on the kidney of mammals. In: Oxytocin, vasopressin and structual analogues. Ed. by J. Rudinger. Perga-mon Press, Czech. Medical Press 1964.Google Scholar
  152. —, M.C. Eggleton, and J. Haslam: The effects of urea and hydrochlorothiazide on the renal functions of rat and domestic fowl. J. Physiol. (Lond.) 187, 247–255 (1966).Google Scholar
  153. —, and M. G. Eggleton: Renal excretion of hyaluronidase and calcium in man during the antidiuretic action of vasopressin and some analogues. J. Physiol. (Lond.) 157, 351–362 (1961).Google Scholar
  154. —, and C. S. Franklin: The isolation of hyaluronic acid and chondroitin sulphate from kidneys and their reaction with urinary hyaluronidase. J. Physiol. (Lond.) 186, 110–120 (1966).Google Scholar
  155. —, and A. L. Greenbaum: The destruction of the antidiuretic activity of vasopressin by-SH active compounds. J. Physiol. (Lond.) 141, 107–116 (1938).Google Scholar
  156. —, and J. Haslam: Water diuresis in the domestic fowl. J. Physiol. (Lond.) 183, 225–235 (1966).Google Scholar
  157. —, and H. Heller: The renal action of posterior pituitary extract and its fractions as analyzed by clearance experiments on rats. J. Physiol. (Lond.) 104, 353–360 (1946).Google Scholar
  158. —, and J. Nunn: Antidiuresis in adult and old rats. J. Physiol. (Lond.) 141, 332–336 (1958).Google Scholar
  159. Dingman, J. F.: Hypothalamus and the endocrine control of sodium and water metabolism in man. Amer. J. med. Sci. 235, 79–99 (1958).CrossRefPubMedGoogle Scholar
  160. —, and J.H. Hauger-Klevene: Treatment of diabetes insipidus: synthetic vasopressin nasal solution. J. clin. Endocr. 24, 550–553 (1964).CrossRefPubMedGoogle Scholar
  161. Dlouha, H., J. Krecek, M. Kraus, and V. Pliska: Sensitivity of rats to vasopressin in the weaning period. Physiol. bohemoslov. 14, 217–224 (1965).PubMedGoogle Scholar
  162. Douglas, C.P.: Oxytocin and antidiuresis in pregnancy at term. Clin. Sci. 28, 39–42 (1965).PubMedGoogle Scholar
  163. Dow, J., and R.O.H. Irvine: The effect of diuretics on cortico-medullary gradients of sodium and urea in rat kidney. Nephron 4, 25–31 (1967).CrossRefGoogle Scholar
  164. Dyball, R.E. J., G. J. Lane, and R.G. Morris: A simplified automatic device for the performance of antidiuretic assays. J. Physiol. (Lond.) 186, 43P–44P (1966).Google Scholar
  165. Earle, D.P. Jr., R.C. De Bodo, I.L. Schwartz, S. J. Farber, M. Kurtz, and J. Greenberg: Effect of hypophysectomy on electrolyte and water metabolism in the dog. Proc. Soc. exp. Biol. (N.Y.) 76, 608–612 (1951).Google Scholar
  166. Edelmann, CM., H.L. Barnett, and H. Stark: Effect of urea on concentration of urinary nonurea solute in premature infants. J. appl. Physiol. 21, 1021–1025 (1966).PubMedGoogle Scholar
  167. Epstein, F.H.: Disorders of renal concentrating ability. Yale J. Biol. Med. 39,186–190 (1966).PubMedGoogle Scholar
  168. —, C.R. Kleeman, and A. Hendrlkx: The influence of bodily hydration on the renal concentrating process. J. clin. Invest. 36, 629–634 (1957).CrossRefPubMedGoogle Scholar
  169. —, H. Levitin, G. Glaser, and P. Lavietes: Cerebral hyponatremia New. Engl. J. Med. 265, 513–518 (1961).CrossRefGoogle Scholar
  170. Ericsson, J. L.E.: Glutaraldehyd perfusion of the kidney for preservation of proximal tubules with patent lumens. J. Microscopie 5, 97–100 (1966).Google Scholar
  171. Ezrin, C., L. Loach, and T. F. Nicholson: Diuretic effect of oxytocin in a patient with reversed diurnal rhythm of water and electrolyte excretion. Canad. med. Ass. J. 87, 673–675 (1962).PubMedGoogle Scholar
  172. Fang, H.S., H.M. Liu, and S.C. Wang: Liberation of antidiuretic hormone following hypo-thalamic stimulation in the dog. Amer. J. Physiol. 202, 212–216 (1962).PubMedGoogle Scholar
  173. Finn, A.L., J.S. Handler, and J. Orloff: Relation between toad bladder potassium content and permeability response to vasopressin. Amer. J. Physiol. 210, 1279–1285 (1966).PubMedGoogle Scholar
  174. Fisher, C., W.R. Ingram, and S.W. Ranson: Diabetes insipidus and the vaso-humoral control of water balance. Ann. Arbor. J.W. Edwards (1938).Google Scholar
  175. Foëx, P., and O. Koralnik: Sécrétion inadéquate d’hormone antidiuretique lors d’une intoxication digitalique massive. Schweiz. med. Wschr. 96, 1750–1751 (1966).PubMedGoogle Scholar
  176. Forsling, M.L., J. J. Jones, and J. Lee: A change of sensitivity to neurohypophysial hormones induced by their intravenous infusion in the rat. J. Physiol (Lond.) 191, 127P (1967).Google Scholar
  177. Forster, R.P.: Kidney, water and electrolytes. Ann. Rev. Physiol. 27, 183–232 (1965).CrossRefGoogle Scholar
  178. Foulkes, E. C.: The action of pitressin on solute permeability of the rabbit nephron in vivo. J. gen. Physiol. 50, 1–8 (1966).CrossRefPubMedGoogle Scholar
  179. Fourmann, J., and G.C. Kennedy: An effect of antidiuretic hormone on the flow of blood through the vasa recta of the rat kidney. J. Endocr. 35, 173–176 (1966).CrossRefGoogle Scholar
  180. —, and D.B. Moffat: The effect of water intake on the efferent arterioles of the juxtame-dullary glomeruli. 2nd Int. Congr. Nephrology Prague 1963. Excerpta med. Int. Congr. Series 78, 627-629.Google Scholar
  181. Frandsen, P.: The specific pressor and antidiuretic activity in rat urine after infusion of lysine-vasopressin. Acta pharmacol. (Kbh.) 25, 197–200 (1967).CrossRefGoogle Scholar
  182. —, and AA. Theil Nielsen: The antidiuretic effect of 5-hydroxytryptamine in the rat after subcutaneous injection of “physiological doses”. Acta pharmacol. (Kbh.) 24, 50–54 (1966).CrossRefGoogle Scholar
  183. Fraser, A. M.: The diuretic action of the oxytocic hormone of the pituitary and its effect on the assay of pituitary extracts. J. Pharmacol, exp. Ther. 60, 89–95 (1937).Google Scholar
  184. —: The action of the oxytocic hormone of the pituitary gland on urine secretion. J. Physiol. (Lond.) 101, 236–251 (1942).Google Scholar
  185. Frey, J., L. Kerp, u. W. Reichardt: Antidiurese und Zunahme der Harnkonzentration nach i. v. Vasopressin-Gabe beim Menschen. Pflügers Arch. ges. Physiol. 272, 80–81 (1960).CrossRefGoogle Scholar
  186. Friedler, R.M., and L.E. Earley: Reduced renal concentrating capacity during isotonic saline loading. Proc. Soc. exp. Biol. (N.Y.) 121, 352–357 (1966).Google Scholar
  187. Fugo, N.W., and G.T. Aragon: The utilization of an old technique for a sensitive antidiuretic assay. Fed. Proc. 6, 330–331 (1947).PubMedGoogle Scholar
  188. Fukuda, T. R.: Tonic antagonism in the water permeability of sea urchin eggs. J. cell. comp. Physiol. 7, 301–311 (1936).CrossRefGoogle Scholar
  189. Galton, V. A., H. Valtin, and D. G. Johnson: Thyroid function in the absence of vasopressin. Endocrinology 78, 1224–1228 (1966).CrossRefPubMedGoogle Scholar
  190. Gans, J.H.: Vasopressin-induced saluresis in sheep. Amer. J. vet. Res. 25, 918–923 (1964).PubMedGoogle Scholar
  191. Gardner, B., G.S. Gordan, and J. Witt: Urinary calcium excretion of women with breast cancer during post-hypophysectomy polyuria, spontaneous interphase and vasopressin-induced antidiuresis. Proc. Soc. exp. Biol. (N.Y.) 109, 71–75 (1962).Google Scholar
  192. Gardner, K.D., and R.H. Maffly: An in vitro demonstration of increased collecting tubular permeability to urea in the presence of vasopressin. J. clin. Invest. 43, 1968–1975 (1964).CrossRefPubMedGoogle Scholar
  193. Gardner, K.D. Jr.: Dry weight as a point of reference in studies of renal papillary composition. Amer. J. Physiol. 211, 1031–1035 (1966).PubMedGoogle Scholar
  194. Gauer, O.H., and P.S. Tata: Vasopressin studies in the rat. II. The amount of water reab-sorbed by the rat kidney after single i. v. injection of vasopressin: The vasopressin water equivalent. Pflügers Arch. Physiol. 290, 286–293 (1966).CrossRefGoogle Scholar
  195. Gaunt, R., C.W. Lloyd, and J.J. Chart: The adrenal-neurohypophysial interrelationship. In: The Neurohypophysis, p. 233. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  196. Gertz, K.H., G.C. Kennedy u. K.J. Ullrich: Mikropunktionsuntersuchungen über die Flüssigkeitsruckresorption aus den einzelnen Tubulusabschnitten bei Wasserdiurese (diabetes insipidus). Pflügers Arch. ges. Physiol. 278, 513–519 (1964).Google Scholar
  197. Gibbs, O.S.: A practical test for the antidiuretic action of pituitary. J. Pharmacol, exp. Ther. 40, 129–137 (1930).Google Scholar
  198. Giebisch, G.: Kidney, water and electrolyte metabolism. Ann. Rev. Physiol. 24, 357–420 (1962).CrossRefGoogle Scholar
  199. Gill, J. R., Jr., and F. C. Barter: On the impairment of renal concentrating ability in prolonged hypercalcemia and hypercalciuria in man. J. clin. Invest. 40, 716–722 (1961).CrossRefPubMedGoogle Scholar
  200. Gilman, A., and L. Goodman: The secretory response of the posterior pituitary to the need for water conservation. J. Physiol. (Lond.) 90, 113–124 (1937).Google Scholar
  201. Ginetzinsky, A. G.: Role of hyaluronidase in the re-absorption of water in renal tubulus. The mechanism of action of the antidiuretic hormone. Nature (Lond.) 182, 1218–1219 (1958).CrossRefGoogle Scholar
  202. Ginsburg, M., and H. Heller: The antidiuretic assay of vasopressin by intravenous injection into unanaesthetized rats. J. Endocr. 9, 267–273 (1953).CrossRefPubMedGoogle Scholar
  203. Glatte, H., R.E. Cutler, and J.T. Dowling: Studies of the renal concentrating defect in thyrotoxicosis. J. clin. Invest. 44, 1050 (1965).Google Scholar
  204. Glaubach, S., u. H. Molitor: Vergleich der Auswertungsmethoden von Gesamtextrakten des Hypophysenhinterlappens am isolierten Meerschweinchenuterus und an der Diuresehem-mung von Hunden, Ratten und Mäusen. Arch. exp. Pathol. Pharmakol. 166, 243–264 (1932).CrossRefGoogle Scholar
  205. Glimstedt, G., N. Jousson, and H.R. Rossman: The collecting tubules of the kidney in the rat at water overloading. Kungl. Fysiogr. Sällsk i Lunds Forh. 24, 1–9 (1954).Google Scholar
  206. Gloor, F., u. L.A. Neiditsch-Halff: Die interstitiellen Zellen des Nierenmarkes der Ratte. Z. Zellforsch. 66, 488–495 (1965).CrossRefPubMedGoogle Scholar
  207. Goldberg, M.: Hyponatremia and the inappropriate secretion of antidiuretic hormone. Amer. J. Med. 35, 293–298 (1963).CrossRefPubMedGoogle Scholar
  208. Goldblatt, E.L., M.L. Kauker, R.S. Hare, and K. Hare: Effects of ethyleneimine on renal action of vasopressin. Proc. Soc. exp. Biol. (N.Y.) 123, 845–847 (1967).Google Scholar
  209. Goodman, B., A. Cohen, M.F. Lewitt, and M. Kahn: Renal concentration in the normal dog. Effect of an acute reduction in salt excretion. Amer. J. Physiol. 206, 1123–1128 (1964).PubMedGoogle Scholar
  210. Goodmann, A., and H. Levitin: Effect of urinary pH on the renal concentrating mechanism. Amer. J. Physiol. 208, 847–851 (1965).Google Scholar
  211. Goodmann, R.: Diabetes insipidus. A two-year study with lysine8-vasopressin. Curr. ther. Res. 8, 56–60 (1966).Google Scholar
  212. Gottschalk, C.W.: Osmotic concentration and dilution of the urine. Amer. J. Med. 36, 670–685 (1964).CrossRefPubMedGoogle Scholar
  213. —, W.E. Lassiter, M. Mylle, K.J. Ullrich, B. Schmidt-Nielsen, R. O’dell, and G. Pehling: Micropuncture study of composition of loop of Henle fluid in desert rodents. Amer. J. Physiol. 204, 532–535 (1963).PubMedGoogle Scholar
  214. —, F. Morel, and M. Mylle: Tracer microinjection studies of renal tubular permeability. Amer. J. Physiol. 209, 173–178 (1965).PubMedGoogle Scholar
  215. —, and M. Mylle: Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Amer. J. Physiol. 185, 430–439 (1956).PubMedGoogle Scholar
  216. —: Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Amer. J. Physiol. 189, 323–328 (1957).PubMedGoogle Scholar
  217. —: Micropuncture study of the mammalian urinary concentrating mechanism. Evidence for the countercurrent hypothesis. Amer. J. Physiol. 196, 927–936 (1959).PubMedGoogle Scholar
  218. —, N.F. Jones, R.W. Winters, and L.G. Welt: Osmolality of renal tubular fluids in potassium-depleted rodents. Clin. Sci. 29, 249–260 (1965).PubMedGoogle Scholar
  219. Granberg, P.-O.: Effect of acute hypoxia on renal haemodynamics and water diuresis in man. Stockholm: Svenska Tryckeriaktiebolaget 1963.Google Scholar
  220. Grantham, J. J., and M.B. Burg: Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Amer. J. Physiol. 211, 255–259 (1966).PubMedGoogle Scholar
  221. Graser, F.: Die Beeinflussung der Chlorurese durch Oxytocin und Vasopressin beim diabetes insipidus. Klin. Wschr. 28, 551–552 (1950).CrossRefPubMedGoogle Scholar
  222. Green, H.H., A.R. Harrington, and H. Valtin: Impaired water diuresis in rats with hereditary hypothalamic diabetes insipidus (DI) after adrenalectomy. 3rd Int. Congr. Nephro-logy, Washington, D.C., Abstr. II, p. 202 (1966).Google Scholar
  223. Greenbaum, A.L., and S.E. Dicker: The effects of mammalian posterior lobe hormones on the swelling of liver and kidney mitochondria in the rat and the dog. Biochim. biophys. Acta (Amst.) 74, 519–524 (1963a).CrossRefGoogle Scholar
  224. Greenbaum, A.L., and S.E. Dicker —: The swelling of mitochondria from the liver and kidney of a primitive rodent. Biochem. biophys. Res. Commun. 12, 402–404 (1963b).CrossRefPubMedGoogle Scholar
  225. Griffith, L.D., R.E. Bulger, and B.F. Trump: The ultrastructure of the functioning kidney. Lab. Invest. 16, 220–246 (1967).PubMedGoogle Scholar
  226. Guhl, U.: Die antidiuretische und pressorische Wirksamkeit von Arginin8-Vasopressin, Lysin8-Vasopressin und Phenylalanin2-Lysin8-Vasopressin beim Menschen. Schweiz, med. Wschr. 91, 798–805 (1961).Google Scholar
  227. Guinnebault, M.: Mise en Evidence du Role de l’Aldosterone dans le Mécanisme de Concentration de l’Urine. Rev. Franc. d’Etudes Cliniques et Biol. 7, 920–926 (1962).Google Scholar
  228. Gulyassy, P. F., and I. S. Edelman: Hydrogenion dependence of the antidiuretic action of vaso-pressin, oxytocin and deaminooxytocin. Biochim. biophys. Acta (Amst.) 102,185–197 (1965).CrossRefGoogle Scholar
  229. Guzek, J.W., and H. Lesnik: Antidiuretic activity of the hypothalamus, neurohypophysis and blood plasma in various states of water metabolism in the guinea pig. Bulletin de l’Académie Polonaise des Sciences 14, 723–726 (1966).PubMedGoogle Scholar
  230. Ham, G. C.: Reproducible diuresis and chloruresis for bioassay of antidiuretic activity. Proc. Soc. exp. Biol. (N.Y.) 53, 210–213 (1943).Google Scholar
  231. —, and E.M. Landis: A comparison of pituitrin with antidiuretic substance found in human urine and placenta. J. clin. Invest. 21, 455–470 (1942).CrossRefPubMedGoogle Scholar
  232. Hancox, N.M., and J. Komender: Quantitative and qualitative changes in the “dark” cells of the renal collecting tubules in rats deprived of water. Quart. J. exp. Physiol. 48, 346–354 (1963).PubMedGoogle Scholar
  233. Handler, J.S., and J. Orloff: Activation of phosphorylase in toad bladder and mammalian kidney by antidiuretic hormone. Amer. J. Physiol. 205, 298–302 (1963).PubMedGoogle Scholar
  234. Hanssen, O.E.: Early post mortem renal changes studied in mice with one kidney exteriorized. II. The functional and the early post mortem morphology of the kidney. Acta path, micro-biol. scand. 49, 297–320 (1960).CrossRefGoogle Scholar
  235. Hare, K., R.C. Hickey, and R.S. Hare: The renal excretion of an antidiuretic substance in the dog. Amer. J. Physiol. 134, 240–244 (1941).Google Scholar
  236. —, E.V. Melville, G.H. Chambers, and R.S. Hare: The assay of antidiuretic material in blood and urine. Endocrinology 36, 323–331 (1945).CrossRefGoogle Scholar
  237. Hare, R.S., K. Hare, and D.M. Philips: The renal excretion of chloride by the normal and by the diabetes insipidus dog. Amer. J. Physiol. 140, 334–348 (1944).Google Scholar
  238. Hays, R.M., and A. Leaf: The problem of clinical vasopressin resistance. In vitro studies. Ann. intern. Med. 54, 700–709 (1961).CrossRefGoogle Scholar
  239. Heidenreich, O., Y. Kook, V. Ling u. H. Menzel: Der Einfluß von Oxytocin auf die Nierendurchblutung und die Größe des Glomerulusfiltrats bei normalen und total hypophysecto-mierten Hunden. Arch. exp. Pathol. Pharmakol. 239, 328–335 (1960).Google Scholar
  240. Heintz, R., E. F. Drews, G. Drews u. H. Brass: Untersuchungen über den Gehalt des menschlichen Plasmas an antidiuretischem Hormon mit einer verbesserten Methode zum Hormonnachweis. Klin. Wschr. 42, 771–776 (1964).CrossRefPubMedGoogle Scholar
  241. Heller, H.: Antidiuretic substances. J. Pharm. Pharmacol. 3, 609–630 (1951).CrossRefPubMedGoogle Scholar
  242. —: The active principles of the neurohypophysis. J. Pharm. Pharmacol. 7, 225–247 (1955).CrossRefPubMedGoogle Scholar
  243. —: (Ed.): The Neurohypophysis. London: Butterworths 1957.Google Scholar
  244. —: Die Hypophysenhinterlappen-und Nebennierenrindenhormone während der ersten Lebenszeit im Zusammenhang mit der Regulation des Wasserhaushaltes. Mschr. Kinderheilk. 106, 81–87 (1958).PubMedGoogle Scholar
  245. —, and K.E. Blackmore: The assay of small amounts of antidiuretic activity by intravenous injection into mice. J. Endocr. 8, 224–228 (1952).CrossRefPubMedGoogle Scholar
  246. —, and R. P. Stephenson: Effect of posterior pituitary extract and its fractions on renal electrolyte excretion. Nature (Lond.) 165, 189 (1950).CrossRefGoogle Scholar
  247. Heller, J., and J. Stulc: Physiology of the antidiuretic hormone. I. A simple titration method. Physiol. bohemoslov. 8, 558–564 (1959).Google Scholar
  248. Hellman, E.S., D.P. Tschudy, and F.C. Bartter: Abnormal electrolyte and water metabolism in acute intermittent porphyria. The transient inappropriate secretion of antidiuretic hormone. Amer. J. Med. 32, 734–747 (1962).CrossRefPubMedGoogle Scholar
  249. Herken, H.: Schlußwort zu der Veröffentlichung von E. Buchborn: Vasopressin und Ödementstehung. Dtsch. med. Wschr. 48, 2137 (1958).CrossRefGoogle Scholar
  250. Herms, W., and R.L. Malvin: Effect of metabolic inhibitors on urine osmolality and electrolyte excretion. Amer. J. Physiol. 204, 1065–1070 (1963).PubMedGoogle Scholar
  251. Hickey, R.C., K. Hare, and R.S. Hare: Some cytological and hormonal changes in the posterior lobe of the rat’s pituitary after water deprivation and stalk section. Anat. Rec. 81, 319–322 (1941).CrossRefGoogle Scholar
  252. Hilger, H.H., J.D. Klümper u. K.J. Ullrich: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. ges. Physiol. 267, 218–237 (1958).CrossRefGoogle Scholar
  253. Hilton, J.G., L.F. Sctan, C.D. Westermann, and O.R. Krueri: Direct stimulation of adrenocortical secretion by synthetic vasopressin in dogs. Proc. Soc. exp. Biol. (N.Y.) 100, 523–525 (1959).Google Scholar
  254. Hollander, W. Jr., T.F. Williams, C.C. Fordham, and L.G. Welt: III. A study of the quantitative relationship between antidiuretic hormone (vasopressin) and the renal tubular reabsorption of water. J. clin. Invest. 36, 1059–1071 (1957).CrossRefPubMedGoogle Scholar
  255. Holmes, W.N., and B.M. Adams: Effects of adrenocortical and neurohypophysial hormones on the renal excretory pattern in the water loaded duck. Endocrinology 73, 5–10 (1963).CrossRefPubMedGoogle Scholar
  256. Hope, D. B., V. V. S. Murti, and V. Dit Vigneatjd: A highly potent analogue of oxytocin, des-amino-oxytocin. J. biol. Chem. 237, 1563–1567 (1962).PubMedGoogle Scholar
  257. Horster, F.A., G. Kuschinsky u. G. Peters: Die diuretische Wirkung von Oxytocin beim Hund. Arch. exp. Pathol. Pharmakol. 237, 241–246 (1959).Google Scholar
  258. Huguenin, R.L., E. Stürmer, R.A. Boissonnas, and B. Berde: Desamino-arginine-vaso-pressin. An analogue of arginine-vasopressin with high antidiuretic activity. Experientia (Basel) 21, 68 (1965).CrossRefGoogle Scholar
  259. Hunter, J., H. Kalant, and J.C. Ogilvie: A simple method for the assay of small amounts of antidiuretic hormone. Canad. J. Biochem. 37, 1215–1225 (1959).CrossRefPubMedGoogle Scholar
  260. Jacobsen, A., A. Grieco, and S. J. Farber: Hexosamine analysis of renal papillae in diuretic and antidiuretic rats. Proc. Soc. exp. Biol. (N.Y.) 115, 1153–1156 (1964).Google Scholar
  261. Jacobson, H.N., and R.H. Kellogg: Isotonic NaCl diuresis in rats. Antidiuresis and chlor-uresis produced by posterior pituitary extracts. Amer. J. Physiol. 184, 376–389 (1956).PubMedGoogle Scholar
  262. Jaenike, J. H.: The relative rates of urea and water permeation in the distal nephron of the intact kidney. J. clin. Invest. 43, 45–55 (1964).CrossRefPubMedGoogle Scholar
  263. Jaenike, J. R.: The influence of vasopressin on the permeability of the mammalian collecting duct to urea. J. clin. Invest. 40, 144–151 (1961).CrossRefPubMedGoogle Scholar
  264. —: Acute effects of the administration of vasopressin during water diuresis in the dog. J. clin. Invest. 42, 161–170 (1963).CrossRefPubMedGoogle Scholar
  265. —, and R. W. Berliner: A study of distal renal tubular functions by a modified stop flow technique. J. clin. Invest. 39, 481–490 (1960).CrossRefPubMedGoogle Scholar
  266. —, and G. A. Bray: Effects of acute transitory urinary obstruction in the dog. Amer. J. Physiol. 199, 1219–1222 (1960).PubMedGoogle Scholar
  267. —, and C. Waterhofse: The renal response to sustained administration of vasopressin and water in man. J. clin. Endocr. 21, 231–243 (1961).CrossRefPubMedGoogle Scholar
  268. Jamison, R.L., C.M. Bennett, and R.W. Berliner: Counter current multiplication by the thin loops of Henle. Amer. J. Physiol. 212, 357–366 (1967).PubMedGoogle Scholar
  269. Jeffers, W. A., M. A. Livezey, and J.H. Austin: A method for demonstrating an antidiuretic action of minute amounts of pitressin, statistical analysis of results. Proc. Soc. exp. Biol. (N.Y.) 50, 184–188 (1942).Google Scholar
  270. Jones, J. J., and J. Lee: The value of the pre-operated rat in the bioassay of vasopressin. J. Endocr. 33, 329–330 (1965).CrossRefPubMedGoogle Scholar
  271. —: The value of rats with hereditary hypothalamic diabetes insipidus for the bioassay of vasopressin. J. Endocr. 37, 335–344 (1967).CrossRefPubMedGoogle Scholar
  272. Jones, N.F., M.A. Barraclough, and I.H. Mills: The mechanism of increased sodium excretion during water loading with 2.5% Dextrose and vasopressin. Clin. Sci. 25, 449–457(1963).PubMedGoogle Scholar
  273. —, M. Mylle, and C.W. Gottschalk: Renal tubular microinjection studies in normal and potassium-depleted rats. Clin. Sci. 29, 261–275 (1965).PubMedGoogle Scholar
  274. Jost, K., and J. Rudinger: Amino acids and peptides. Lxix. Synthesis of two biologically active analogues of deamino-oxytocin not containing a disulphide bond. Collection Czech. Chem. Commun. 32, 1229–1241 (1967).CrossRefGoogle Scholar
  275. Kasafirek, E., V. Rabek, J. Rudinger, and F. Sorm: Amino acids and peptides. Lxvi. Synthesis of ten extended-chain analogues of lysine-vasopressin. Collection Czech. Chem. Commun. 31, 4581–4591 (1966).CrossRefGoogle Scholar
  276. Kashiwagi, R.: Mechanism of the antidiuretic effect of vasopressin. Nature (Lond.) 184, 991 (1959).CrossRefGoogle Scholar
  277. Kaye, M.: An investigation into the cause of hyponatremia in the syndrome of inappropriate secretion of antidiuretic hormone. Amer. J. Med. 41, 910–926 (1966).CrossRefPubMedGoogle Scholar
  278. Kennedy, G.C.: The effect of adrenal steroids upon the secretion of hypotonie urine by the rat. J. Endocr. 20, 365–374 (1960).CrossRefPubMedGoogle Scholar
  279. Kessler, E., R.L. Allen, Jr., D. Kirman, and H. Strauss: Effect of aldosterone and cortisol on sodium and water content of the rat kidney. Amer. J. Physiol. 207, 109–112 (1964).PubMedGoogle Scholar
  280. Kestranek, W.H., H. Molitor u. E.P. Pick: Über die Wirkungsstärke von Hypophysen-extrakten, gemessen an ihren antidiuretischen Eigenschaften. Biochem. Z. 164, 34–43 (1925).Google Scholar
  281. Kiil, F., and K. Aukland: Renal tubular localization of water and sodium reabsorption in antidiuresis and water diuresis. Scand. J. clin. Lab. Invest. 12, 277–289 (1960)CrossRefPubMedGoogle Scholar
  282. Kinne, R., W. V. Macfarlane, and O.E. Budtz-Olsen: Hormones and electrolytic excretion in sheep. Nature (Lond.) 192, 1084–1085 (1961).CrossRefGoogle Scholar
  283. Kleeman, C.R., M.H. Maxwell, and R. Rockney: Production of hypertonic urine in humans in the probable absence of antidiuretic hormone (ADH). Proc. Soc. exp. Biol. (N.Y.) 96, 189–191 (1957).Google Scholar
  284. Kleinman, L. I., E. P. Radford Jr., and G. Torelli: Urea and inulin clearances in undisturbed, unanesthetized rats. Amer. J. Physiol. 208, 578–584 (1965).PubMedGoogle Scholar
  285. Kobinger, W.: Die Wirkung von Vasopressin auf die Konzentrationsgradienten von Natrium und Harnstoff im Nierengewebe bei verschiedenen Diuresezuständen. Naunyn-Schmiede-bergs Arch. exp. Path. Pharmak. 246, 538–551 (1964).Google Scholar
  286. Konzett, H.: Synthetische Analoge von Hypophysen-Hinterlappen-Hormonen. Arch. exp. Pathol. Pharmakol. 245, 153–166 (1963).Google Scholar
  287. Korr, J.H.: The osmotic function of the chicken kidney. J. cell. comp. Physiol. 13, 175–193 (1939).CrossRefGoogle Scholar
  288. Kramar, J., E.H. Grinell, and W.M. Duff: Studies on the renal activity of oxytocin. Amer. J. med. Sci. 252, 331–340 (1966).CrossRefPubMedGoogle Scholar
  289. Kupfer, S., and J.D. Kosovsky: The effects of intrarenal arterial injection of digitalis glyco-sides on urinary concentration. Fed. Proc. 21, 435–437 (1962).Google Scholar
  290. Kuriaki, K., et N. Baba: Effets de la vasopressine et de la serotonine sur l’anhydrase carbonique, la glutaminase-I, l’atpase et la phosphorylation oxydative dans le rein de rat. C.R. Soc. Biol. (Paris) 153, 1638–1640 (1959).Google Scholar
  291. Kühn, E.: Influence de l’antidiurese obtenu par infusion de l’arginine-vasopressine (AVP) de la lysine-vasopressine (LVP) et de l’ocytocine sur l’excretion du calcium chez la brebis. Arch. int. Pharmacodyn. 160, 480–484 (1966).PubMedGoogle Scholar
  292. —, et G. Peeters: Influence de l’arginine-vasopressin sur l’excretion d’electrolytes chez le mouton. Arch. int. Pharmacodyn. 155, 455–458 (1965).PubMedGoogle Scholar
  293. —: Influence de la secretion par voie reflexe des hormones post hypophysaires sur l’excre-tion du potassium chez la chevre. Arch. int. Pharmacodyn. 166, 214–215 (1967).PubMedGoogle Scholar
  294. Lassiter, W.E., A. Prick, G. Rumrich, and K.J. Ullrich: Influence of ionic calcium on the water permeability of proximal and distal tubules in the rat kidney. Pflügers Arch. ges. Physiol. 285, 90–95 (1965).CrossRefGoogle Scholar
  295. —, M. Mylle, and C. W. Gottschalk: Micropuncture study of urea transport in rat renal medulla. Amer. J. Physiol. 210, 965–970 (1966).PubMedGoogle Scholar
  296. Lauber, J.K.: A bio-assay and histochemical study of antidiuretic hormone in adrenalecto-mized rats. Amer. J. Physiol. 200, 898–900 (1961).PubMedGoogle Scholar
  297. Lauson, H.D.: Antidiuretic hormone. Fed. Proc. 24, 731–736 (1965).PubMedGoogle Scholar
  298. Lavietes, P.H., L.M. D’esopo, and H.E. Harrison: The water and base balance of the body. J. clin. Invest. 14, 251–265 (1935).CrossRefPubMedGoogle Scholar
  299. Leaf, A.: Transepithelial transport and its hormonal control in toad bladder. Ergebn. Physiol. 56, 216–263 (1965).CrossRefPubMedGoogle Scholar
  300. —, F.C. Bartter, R.F. Santos, and O. Wrong: Evidence in man that urinary electrolyte loss induced by pitressin is a function of water retention. J. clin. Invest. 32, 868–878 (1953).CrossRefPubMedGoogle Scholar
  301. —, W.S. Kerr, O. Wrong, and J. Y. Chatillon: Effect of graded compression of the renal artery on water and solute excretion. Amer. J. Physiol. 179, 191–208 (1954).PubMedGoogle Scholar
  302. —, and A. R. Mamby: The normal antidiuretic mechanism in man and dog, its regulation by extracellular fluid tonicity. J. clin. Invest. 31, 54–59 (1952).CrossRefPubMedGoogle Scholar
  303. Lee, J.: Neurohypophysial hormones and fluid balance in hepatic cirrhosis. Thesis: London 1960.Google Scholar
  304. Lees, F., and M.F. Lockett: The influence of hypophysectomy and of adrenalectomy on the urinary changes induced by oxytocin in rats. J. Physiol. (Lond.) 17, 403–410 (1964).Google Scholar
  305. Leuschner, F.: Untersuchungen über die Wirkung des Vasopressins und analoger Polypeptide auf die Niere. Z. Vitamin-, Hormon-u. Fermentforsch. 11, 98–158 (1960).Google Scholar
  306. Lever, A.F.: The vasa recta and countercurrent multiplication. Acta med. scand. Suppl. 434, 33 pp. (1965).Google Scholar
  307. Levine, R., and J. A. Vogel: Cardiovascular and metabolic effects of cyclic adenosine 3′,5′-monophosphate in unanesthetized dogs. J. Pharmacol. exp. Ther. 151, 262–272 (1966).PubMedGoogle Scholar
  308. Levine, R.A.: The antidiuretic action of adenosine 3′,5′-monophosphate (3′,5′-AMP) in man. J. clin. Invest. 45, 1039 (1966).CrossRefGoogle Scholar
  309. Levinsky, N.G., and R.W. Berliner: Changes in composition of the urine in ureter and bladder at low urine flows. Amer. J. Physiol. 196, 549–553 (1959).PubMedGoogle Scholar
  310. —, D.G. Davidson, and R.W. Berliner: Changes in urine concentration during prolonged administration of vasopressin and water. Amer. J. Physiol. 196, 451–456 (1959).PubMedGoogle Scholar
  311. Levitin, H., A. Goodman, G. Pigeon, and P.H. Epstein: Composition of renal medulla during water diuresis. J. clin. Invest. 41, 1145–1152 (1962).CrossRefPubMedGoogle Scholar
  312. Levkoff, A.H., T.W. Demunbrun, and A.D. Keller: Disparity between fluid intake and renal concentrating capacity in dogs with diabetes insipidus. Amer. J. Physiol. 176, 25–32 (1954).PubMedGoogle Scholar
  313. Lilien, O.M., and R. Spitzer: The countercurrent system and osmotic diuresis. J. Urol. (Baltimore) 92, 9–16 (1964).Google Scholar
  314. Lindemann, R.D., H.C. Von Buren, and L.G. Raisz: Effect of steroids on water diuresis and vasopressin sensitivity. J. clin. Invest. 40, 152–158 (1961).CrossRefGoogle Scholar
  315. Lindquist, K.M., and L.W. Rowe: The antidiuretic activity of the posterior pituitary and its quantitative evaluation. J. Amer, pharm. Ass. 38, 227–232 (1949).CrossRefGoogle Scholar
  316. Linkenbach, H.J., P. Eckert u. O.H. Gatter: Nachweis eines diuretischen Faktors im menschlichen Serum während der durch Expansion des intrathorakalen Blutvolumens ausgelösten Diurèse. Pflügers Arch. ges. Physiol. 293, 107–114 (1967).CrossRefGoogle Scholar
  317. Lipsett, M.B., I.L. Schwartz, and N.A. Thorn: Hormonal control of sodium, potassium, chloride and water metabolism. Mineral Metab. 1 B, 473–549. New York: Academic Press 1961.Google Scholar
  318. Little, J.B., and E.P. Radford: Bio-assay for antidiuretic activity in blood of undisturbed rats. J. appl. Physiol. 19, 179–186 (1964).PubMedGoogle Scholar
  319. Little, J.M., S.L. Wallace, E.C. Whatley, and G. A. Anderson: Effect of pitressin on the urinary excretion of chloride and water in the human. Amer. J. Physiol. 151, 174–185 (1947).PubMedGoogle Scholar
  320. Lockett, M.F., and T. Lima: The failure of neurohypophyseal hormones to prevent excessive loss of sodium from isolated cat kidneys perfused with blood drawn from headless donors. Arch. Int. Physiol. Biochim. 69, 327–328 (1961).CrossRefPubMedGoogle Scholar
  321. —, and E.N. Roberts: Some actions of growth hormone on the perfused cat kidney. J. Physiol. (Lond.) 169, 879–888 (1963).Google Scholar
  322. Lundsgaard, E.: The effect of phloridzin on the isolated kidney and isolated liver. Scand. Arch. Physiol. 72, 265–270 (1935).CrossRefGoogle Scholar
  323. Macfarlane, W.V., R. Kinne, C.M. Wohnsley, B.D. Siebert, and D. Peter: Vasopressin and the increase of water and electrolyte excretion by sheep, cattle and camels. Nature (Lond.) 214, 979–981 (1967).CrossRefGoogle Scholar
  324. Malvin, R.L., and M.M. Fusco: Alteration in the countercurrent gradient by lesion in the median eminence. Nature (Lond.) 212, 1591–1592 (1966).CrossRefGoogle Scholar
  325. —: Renal function in unanesthetized normal and diabetes insipidus rats. J. appl. Physiol. 22, 380–382 (1967).PubMedGoogle Scholar
  326. Manchester, R. C.: Influence of posterior pituitary extracts on mineral and water exchange in children. Proc. Soc. exp. Biol. (N.Y.) 29, 717–719 (1932).Google Scholar
  327. Marsh, D.J.: Hypo-osmotic reabsorption due to active salt transport in perfused collecting ducts of the rat renal medulla. Nature (Lond.) 210, 1179–1180 (1966).CrossRefGoogle Scholar
  328. Marshall, S., T.B. Miller, and A.E. Farah: Effect of renal papillectomy on ability of the hamster to concentrate urine. Amer. J. Physiol. 204, 363–368 (1963).Google Scholar
  329. Martin, G.J., J.N. Moss, and R.D. Smyth: Vasopressin potentiation and stimulation by bromelain. Arch. int. Pharmacodyn. 152, 445–449 (1964).PubMedGoogle Scholar
  330. Marx, H.: Zur Theorie der Diurese. Klin. Wschr. 9, 2384 (1930).CrossRefGoogle Scholar
  331. Mathé, G., et J. Altmann: Contribution expérimentale a l’étude de l’inactivation hépatique de la pitressine. Presse méd. 62, 983–985 (1954).PubMedGoogle Scholar
  332. McCann, S. M., J. Antunes-Rodrigues, R. Nallar, and H. Valtin: Pituitary-Adrenal function in the absence of vasopressin. Endocrinology 79, 1058–1064 (1966).CrossRefPubMedGoogle Scholar
  333. McCreary, A.B., J.Q. Adams, and R.R. Overman: A bioassay technique for plasma antidiuretic activity. J. Lab. clin. Med. 49, 626–629 (1957).PubMedGoogle Scholar
  334. McDonald, S.J., and H.E. De Wardener: Some observations on the production of a hypo-osmotic urine during the administration of 0.9% saline and vasopressin in the dog. Clin. Sci. 28, 445–459 (1965).PubMedGoogle Scholar
  335. Mees, E. J.D.: Reversible water losing state, caused by incomplete ureteric obstruction. Acta med. scand. 168, 193–197 (1960).CrossRefGoogle Scholar
  336. Meroney, W.H., M.E. Rubini, and W.B. Blythe: The effect of antecedent diet on urine concentrating ability. Ann. intern. Med. 48, 562–573 (1958).CrossRefPubMedGoogle Scholar
  337. Mertz, D. P.: Über die akute Wirkung von synthetischem Oxytocin auf die Nierenhämo-dynamik und renale Elektrolytausscheidung beim Menschen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 239, 410–424 (1960).Google Scholar
  338. —: Zur Frage einer Beteiligung von Nichtelektrolyten (Harnstoff, Kreatinin) am Vorgang der Harnkonzentrierung beim Menschen. Klin. Wschr. 43, 661–673 (1965).CrossRefPubMedGoogle Scholar
  339. Miller, L., L. Fisch, and C.R. Kleeman: Comparative potency of the antidiuretic hormones lysine8-and arginine8-vasopressin in humans. J. clin. Invest. 44, 1075–1076 (1965).Google Scholar
  340. C.R. Kleeman —: Relative potency of arginine8-vasopressin and lysine8-vasopressin in humans. J. Lab. clin. Med. 69, 270–291 (1967).PubMedGoogle Scholar
  341. Moll, J., and D. De Wied: Observations on the hypothalamo-posthypophyseal system of the posterior lobectomized rat. Gen. comp. Endocr. 2, 215–228 (1962).CrossRefPubMedGoogle Scholar
  342. Morel, F., M. Mylle, and C.W. Gottschalk: Tracer microinjection studies of effect of ADH on renal tubular diffusion of water. Amer. J. Physiol. 209, 179–187 (1965).PubMedGoogle Scholar
  343. Morrison, S.D., C. Mackay, E. Hurlbrink, J.K. Wier, M.S. Nick, and F.K. Miller: The water exchange and polyuria of rats deprived of food. Quart. J. exp. Physiol. 52, 51–67 (1967).Google Scholar
  344. Motzfeldt, K.: Experimental studies on the relation of the pituitary body to renal function. J. exp. Med. 25, 153–188 (1917).CrossRefPubMedGoogle Scholar
  345. Munsick, R.A.: Neurohypophysial hormones of chickens and turkeys. Endocrinology 75, 104–112 (1964).CrossRefPubMedGoogle Scholar
  346. —, W.H. Sawyer, and H.B. Van Dyke: The antidiuretic potency of arginine-and lysine-vasopressin in the pig with observations on porcine renal function. Endocrinology 63, 688–693 (1958).CrossRefPubMedGoogle Scholar
  347. Murphy, R. J.F.: Studies on the mechanisms of saline diuresis. J. clin. Invest. 29, 836 (1950).CrossRefPubMedGoogle Scholar
  348. Nelson, E.E., and G.G. Woods: The diuretic-antidiuretic activity of posterior pituitary extracts. J. Pharmacol, exp. Ther. 50, 241–253 (1934).Google Scholar
  349. Nielsen, AA, Th.: A note on the relative antidiuretic potency of beef and hog vasopressin. Acta endocr. (Kbh.) 29, 561–564 (1958).Google Scholar
  350. —: Dissimilarity between arginine and lysine vasopressin in rat pressor assays. Acta endocr. (Kbh.) 35, 299–311 (1960).Google Scholar
  351. —: Hypofysebaglapshormoner. København: Kandrup & Wunsch Bogtrykkeri 1964 [Thesis in Danish, with summary in English].Google Scholar
  352. —: On the antidiuretic activity of Phe2-Lys8-vasopressin in the rat. Acta endocr. (Kbh.) 49, 312–319 (1965).Google Scholar
  353. Nielsen, B.: Correlation between antidiuretic hormone effect and the renal excretion of magnesium and calcium in man. Acta endocr. (Kbh.) 45, 151–160 (1964).Google Scholar
  354. —, and N. A. Thorn: Transient excess urinary excretion of antidiuretic material in acute intermittent porphyria with hyponatremia and hypomagnesiemia. Amer. J. Med. 38, 345–358 (1965).CrossRefPubMedGoogle Scholar
  355. Niesel, W., u. H. Röskenbleck: Konzentrierung von Lösungen unterschiedlicher Zusammensetzung durch alleinige Gegenstromdiffusion und Gegenstromosmose als möglicher Mechanismus der Harnkonzentrierung. Pflügers Arch. ges. Physiol. 283, 230–241 (1965).CrossRefGoogle Scholar
  356. Nissen, O.I.: The filtration fractions of plasma supplying the superficial and deep venous drainage area of the cat kidney. Acta physiol. scand. 68, 275–285 (1966).CrossRefGoogle Scholar
  357. Nusynowitz, M.L., L.G. Wegienka, B.F. Bower, and P.H. Forsham: Effect on vasopressin action of analgesic drugs in vitro Amer. J. Med. Sci 252, 424–428 (1966).CrossRefGoogle Scholar
  358. O’connor, W. J.: The role of the neurohypophysis of the dog in determining urinary changes and the antidiuretic activity of the urine following the administration of sodium chloride or urea. Quart. J. exp. Physiol. 36, 21–48 (1950).Google Scholar
  359. Orloff, J., and J.S. Handler: The cellular mode of action of antidiuretic hormone. Amer. J. Med. 36, 686–697 (1964).CrossRefPubMedGoogle Scholar
  360. —: The role of adenosine 3′. 5′-phosphate in the action of antidiuretic hormone. Amer. J. Med. 42, 757–768 (1967).CrossRefPubMedGoogle Scholar
  361. Osvaldo, L., and H. Latta: The thin limbs of the loop of Henle. J. Ultrastruct. Res. 15, 144–168 (1966a).CrossRefPubMedGoogle Scholar
  362. —: Interstitial cells of the renal medulla. J. Ultrastruct. Res. 15, 589–613 (1966b).CrossRefPubMedGoogle Scholar
  363. Ottoson, D., F. Sjostrand, S. Stenström, and G. Svaeticehin: Microelectrode studies on the E.M.F. of the frog skin related to electron microscopy of the dermo-epidermal junction. Acta physiol. scand. 29 suppl. 106, 611–624 (1953).Google Scholar
  364. Papper, S., L. Saxon, M.B. Burg, H.W. Seifer, and J.D. Rosenbaum: The effect of morphine sulfate upon the renal excretion of water and solute in man. J. Lab. clin. Med. 50, 692–704 (1957).PubMedGoogle Scholar
  365. Peachey, L., and H. Rasmussen: Structure of the toad urinary bladder as related to its physiology. J. biophys. biochem. Cytol. 10, 529–553 (1961).CrossRefPubMedGoogle Scholar
  366. Pena, J.C., and R.L. Malvin: Transcellular diffusion of non-electrolytes across the renal tubular epithelium. J. gen. Physiol. 45, 643–649 (1962).CrossRefPubMedGoogle Scholar
  367. Perlmutt, J. H.: Renal activity of vasopressin in anesthetized dogs. Amer. J. Physiol. 200, 400–404 (1961).PubMedGoogle Scholar
  368. —: Influence of hydration on renal function and medullary sodium during vasopressin infusion. Amer. J. Physiol. 202, 1098–1104 (1962).PubMedGoogle Scholar
  369. Petersen, M. J., and I. S. Edelmann: Calcium inhibition of the action of vasopressin on the urinary bladder of the toad. J. clin. Invest. 43, 583–594 (1964).CrossRefPubMedGoogle Scholar
  370. Philippson, CHR.: Der Gehalt an Glycerylphosphorylcholin und Glycerylphosphoryläthanol-amin von Nierenmark und Nierenrinde hochreiner Wistarratten während forcierter Wasser-diurese und extrem langer Durst-Antidiurese. Pflügers Arch. ges. Physiol. 280, 30–37 (1964).CrossRefGoogle Scholar
  371. Pickford, M.: Neurohypophysis and kidney function. In: The pituitary gland, Vol. 3. Ed. by G.W. Harris and B.T. Donovan. London: Butterworths 1966.Google Scholar
  372. Pigeon, G., and H. Epstein: Water uptake in the intact frog. Amer. J. Physiol. 204, 217–221 (1963).PubMedGoogle Scholar
  373. Pliska, V., and I. Krejči: The dose-response relation of the antidiuretic and vasopressor activities of 4-asparagine8lysine-vasopressin. Arch. int. Pharmacodyn. 161, 289–297 (1966).PubMedGoogle Scholar
  374. —, and I. Rychlik: Determination of antidiuretic activity in the rat for structural analogues of the neurohypophysial hormones. Acta endocr. (Kbh.) 54, 129–140 (1967).Google Scholar
  375. Poisner, A. M.: Interaction of oxytocin and vasopressin with ß-adrenergic receptors in the kidney. Nature (Lond.) 201, 199–200 (1964).CrossRefGoogle Scholar
  376. Poulson, T.L.: Countercurrent multipliers in avian kidneys. Science 148, 389–391 (1965).CrossRefPubMedGoogle Scholar
  377. Poy, R.F.K.P., and P.J. Bentley: Fine structure of the epithelial cells of the toad urinary bladder. Exp. Cell. Res. 20, 235–237 (1960).CrossRefGoogle Scholar
  378. Rabasa, S.L., and F. Bergman: A method to measure the renal sensitivity to ADH in the rat. Acta physiol. lat.-amer. 14, 89–93 (1964).PubMedGoogle Scholar
  379. Radford, E. P.: Factors modifying water metabolism in rats fed dry diets. Amer. J. Physiol. 196, 1098–1108 (1959).PubMedGoogle Scholar
  380. Raisz, L.G., W.F. McNeely, L. Saxon: Studies on the renal concentrating mechanism. J. Lab. clin. Med. 52, 437–445 (1958).PubMedGoogle Scholar
  381. L. Saxon —, and J.D. Rosenbaum: The effects of cortisone and hydrocortisone on water diuresis and renal function in man. J. clin. Invest. 36, 767–779 (1957).CrossRefPubMedGoogle Scholar
  382. Ralli, E.P., L.G. Raisz, S.H. Leslie, M.E. Dumm, and B. Laken: Evidence for more than one antidiuretic substance in pitressin. Amer. J. Physiol. 163, 141–147 (1950).PubMedGoogle Scholar
  383. Rallison, M.L., and F.H. Tyler: Treatment of diabetes insipidus in children with lysine8-vasopressin. J. Pediat. 70, 122–125 (1967).CrossRefPubMedGoogle Scholar
  384. Robert, F.: Über die Einwirkung von Hypophysin und seine Fraktionen auf den Wassersalzstoffwechsel. Arch. exp. Pathol. Pharmakol. 164, 367–371 (1932).CrossRefGoogle Scholar
  385. Robinson, J.D.: Interaction between protein sulphydryl groups and lipid double bonds in biological membranes. Nature (Lond.) 212, 199–200 (1966).CrossRefGoogle Scholar
  386. Robinson, J.H., Jr., and L.E. Farr: Relation between clinical oedema and excretion of antidiuretic substance in the urine. Ann. intern. Med. 14, 42–54 (1940).CrossRefGoogle Scholar
  387. Robinson, K.W., and W.V. Macfarlane: Plasma antidiuretic activity of marsupials during exposure to heat. Endocrinology 60, 679–680 (1957).CrossRefPubMedGoogle Scholar
  388. Robinson, R.R., and E.E. Owen: Intrarenal distribution of ammonia during diuresis and antidiuresis. Amer. J. Physiol. 208, 1129–1134 (1965).PubMedGoogle Scholar
  389. —, and B. Schmidt-Nielsen: Intra-renal distribution of free amino acids in antidiuretic ruminants. Comp. Biochem. Physiol. 19, 187–195 (1966).CrossRefPubMedGoogle Scholar
  390. Robson, J. S.: Factors affecting renal concentrating ability. Electron-microscopic study of the kidney during antidiuresis, diuresis and potassium depletion. In: Hormones and the Kidney. Ed. by P.C. Williams. Mem. Soc. Endocr. No. 13, p. 105–119. New York: Academic Press 1963.Google Scholar
  391. Roemmelt, J.C., O.W. Sartorius, and R.F. Pitts: Excretion and reabsorption of sodium and water in the adrenalectomized dog. Amer. J. Physiol. 159, 124–136 (1949).PubMedGoogle Scholar
  392. Rosas, R., L. Barnafi, T. Pereda, and H. Croxatto: Effect of oxytocin structural changes on rat renal excretion of Na, K and water. Amer. J. Physiol. 202, 901–904 (1962).PubMedGoogle Scholar
  393. Rosenbaum, J.D., R.K. Davis, and B.C. Ferguson: The influence of cortisone on water diuresis in man. J. clin. Invest. 30, 668 (1951).Google Scholar
  394. Rosenfeld, J.B., K. Hirata, A.N. Brest, and J. H. Moyer: Effect of large doses of hyaluronidase upon urine concentration in dogs. Israel. J. Med. Sci. 3, 119–130 (1967).PubMedGoogle Scholar
  395. Rosenfeld, S., A.L. Sellers, and J. Katz: Development of an isolated perfused mammalian kidney. Amer. J. Physiol. 196, 1155–1159 (1959).PubMedGoogle Scholar
  396. Ruch, W.: Estimation of antidiuretic hormone in the urine of healthy subjects and patients with inappropriate secretion of vasopressin (Schwartz-Bartter syndrome). Acta endocr. (Kbh.) 54, 113–121 (1967).Google Scholar
  397. Rudinger, J.: Synthetic analogues of oxytocin with inhibitor activity or protracted action. Excerpta Med. Int. Congr. Ser. No. 83, p. 1202–1206. London 1964.Google Scholar
  398. —: (Ed.) Oxytocin, vasopressin and their structural analogues. Proc. 2nd Int. Pharmacol. Meeting, Praha, Aug. 1963. Oxford: Pergamon Press; Praha: Czech. Med. Press 1964a.Google Scholar
  399. Rudinger, J., and K. Jost: A biologically active analogue of oxytocin not containing a disulfide group. Experientia (Basel) 20, 570 (1964).CrossRefGoogle Scholar
  400. Ruiz-Guinazu, A., E.E. Arrizurieta, and L. Yelinek: Electrolyte, water and urea concent in dog kidneys in different states of diuresis. Amer. J. Physiol. 206, 725–730 (1964).PubMedGoogle Scholar
  401. Sabour, M.S., M.K. MacDonald, A.T. Lambie, and J.S. Robson: The electron microscopic appearance of the kidney in hydrated and dehydrated rats. Quart. J. exp. Physiol. 49, 162–170 (1964).PubMedGoogle Scholar
  402. Saikia, T. C. Composition of the renal cortex and medulla of rats during water diuresis and antidiuresis. Quart. J. exp. Physiol. 50, 146–157 (1965a).PubMedGoogle Scholar
  403. —: The acute effect of vasopressin upon the composition of the rat renal cortex and medulla. Quart. J. exp. Physiol. 50, 158–168 (1965b).PubMedGoogle Scholar
  404. Sakai, F., M. Tadokoro, and J. Yamaguchi: Osmolality of loop of Henle fluid in golden hamster. Jap. J. Pharmacol. 16, 492 (1966).CrossRefPubMedGoogle Scholar
  405. Samaan, A.: The effect of pituitary (posterior lobe) extract upon the urinary flow in non-anaesthetized dogs. J. Physiol. (Lond.) 85, 37–46 (1935).Google Scholar
  406. Sanyal, N.N., and R.S. Snart: Absorption of octapeptide hormones on to lipid monolayers. Nature (Lond.) 1, 798–799 (1967).CrossRefGoogle Scholar
  407. Sartorius, O.W., and K. Roberts: The effects of pitressin and desoxycorticosterone in low dosage on the excretion of sodium, potassium and water by the normal dog. Endocrinology 45, 273–283 (1949).CrossRefPubMedGoogle Scholar
  408. Saunders, W. G., and R. A. Munsick: Antidiuretic potency of oxytocin in women post partum. Amer. J. Obstet. Gynec. 95, 5–11 (1966).PubMedGoogle Scholar
  409. Sawyer, W. H.: Posterior pituitary extracts and excretion of electrolytes by the rat. Amer. J. Physiol. 169, 583–587 (1952).PubMedGoogle Scholar
  410. —: Differences in the antidiuretic response of rats to the intravenous administration of lysine and arginine vasopressin. Endocrinology 63, 694–698 (1958).CrossRefPubMedGoogle Scholar
  411. —: Comparative physiology and pharmacology of the neurohypophysis. Rec. Progr. Horm. Res. 17, 437–465 (1961a).PubMedGoogle Scholar
  412. —: Neurohypophysial hormones. Pharmacol. Rev. 13, 225–277 (1961b).PubMedGoogle Scholar
  413. —: Biological assays for oxytocin and vasopressin. Meth. med. Res. 9, 210–219 (1961c).PubMedGoogle Scholar
  414. —: Neurohypophyseal peptides and water excretion in the vertebrates. In: Hormones and the kidney. Ed. by P.C. Williams. Mem. Soc. Endocr. No. 13. London: Academic Press 1963.Google Scholar
  415. —: Biological assays for neurohypophysial principles in tissues and blood. In: The pituitary gland. Ed. by G.W. Harris and B.T. Donovan. London: Butterworths 1966.Google Scholar
  416. —, W.Y. Chan, and H.B. Van Dyke: Antidiuretic responses to neurohypophysial hormones and some of their synthetic analogues in dogs and rats. Endocrinology 71, 536–540 (1962).CrossRefPubMedGoogle Scholar
  417. —, and H. Valtin: Inhibition of vasopressin antidiuresis by extracts of pituitaries from rats with hereditary hypothalamic diabetes insipidus and by oxytocin. Endocrinology 76, 999–1001 (1965).CrossRefPubMedGoogle Scholar
  418. —: Antidiuretic responses of rats with hereditary hypothalamic diabetes insipidus to vasopressin, oxytocin and nicotine. Endocrinology 80, 207–210 (1967).CrossRefPubMedGoogle Scholar
  419. Scheer, R.L., L.G. Raiszand, and C.W. Lloyd: Changes in diabetes insipidus during pregnancy and lactation. J. clin. Endocr. 19, 805–811 (1959).CrossRefPubMedGoogle Scholar
  420. Schmidt-Nielsen, B.: Urea excretion in mammals. Physiol. Rev. 38, 139–168 (1958).PubMedGoogle Scholar
  421. Schoen, E.J.: Renal diabetes insipidus. Pediatrics 26, 808–816 (1960).PubMedGoogle Scholar
  422. Schröder, R.: Herstellung und Funktion eines isolierten Nierenpräparates vom Hund. Pflügers Arch. ges. Physiol. 286, 189–198 (1965).CrossRefGoogle Scholar
  423. —: Die Wirkung einer Angiotensininfusion auf die Harnkonzentration des Menschen unter maximaler ADH-Wirkung. Pflügers Arch. ges. Physiol. 290, 193–201 (1966).CrossRefGoogle Scholar
  424. —, H.J. Buschmann u. K. Ehrentahl: Die Wirkung von Tonephin auf die rénale Elektrolyt-und Harnstoffausscheidung bei Infusion von Glucose und Sterofundin. Klin. Wschr. 44, 943–951 (1966).CrossRefPubMedGoogle Scholar
  425. —, G. Meyer-Burgdorff, D. Rott u. O. Brahms: Vergleichende Untersuchungen über die Wirkung von ADH, Hypertensin und Renin auf renale Wasser-und Elektrolytausscheidung der Ratte. Arch. exp. Pathol. Pharmakol. 240, 285–312 (1961).Google Scholar
  426. Schwartz, I.L., and L.M. Livingston: Cellular and molecular aspects of the antidiuretic action of vasopressin and related peptides. Vitamins and Hormones 22, 261–358 (1964).CrossRefPubMedGoogle Scholar
  427. —, H. Rasmussen, and J. Rudinger: Activity of neurohypophysial hormone analogues lacking a disulfide bridge. Proc. nat. Acad. Sci. (Wash.) 52, 1044–1045 (1964).CrossRefGoogle Scholar
  428. Schwartz, W.B., and A.S. Relman: Effects of electrolyte disorders on renal structure and function. New Engl. J. Med. 276, 383–389 (1967).CrossRefPubMedGoogle Scholar
  429. Schwarz, W., u. J. Wolff: Veränderungen am Hauptstück und peritubulären Kapillaren der Rattenniere nach Hypophysectomie. Z. Zellforsch. 71, 441–454 (1966).CrossRefPubMedGoogle Scholar
  430. Self, J.: Water intoxication induced by oxytocin administration. Amer. J. med. Sci. 252, 573–574 (1966).CrossRefPubMedGoogle Scholar
  431. Selkurt, E.E.: Effect of ureteral blockade on renal blood flow and urinary concentrating ability. Amer. J. Physiol. 205, 286–292 (1963).PubMedGoogle Scholar
  432. —, M. J. Elpers, and J. Womack: Effects of renal venous occlusion on renal haemodynamies and concentrating ability. Amer. J. Physiol. 207, 989–997 (1964).PubMedGoogle Scholar
  433. Sellwood, R.V., and E.B. Verney: The effect of water and of isotonic saline administration on the renal plasma and glomerular filtrate flows in the dog with incidental observations on these flows of compression of the carotid arteries. Phil. Trans. B. 238, 361–396 (1955).CrossRefGoogle Scholar
  434. Shannon, J. A.: The control of the renal excretion of water. J. exp. Med. 76, 387–399 (1942).CrossRefPubMedGoogle Scholar
  435. Share, L.: Acute reduction in extracellular fluid volume and the concentration of antidiuretic hormone in blood. Endocrinology 69, 925–933 (1961).CrossRefPubMedGoogle Scholar
  436. Shuster, A., E. A. Alexander, R.C. Lalone, and N.G. Levinsky: Renal blood flow, sodium excretion and concentrating ability during saline infusion. Amer. J. Physiol. 211, 1181–1186 (1966).PubMedGoogle Scholar
  437. Sigler, M.H., J.N. Forrest, and J.R. Elkington: Renal concentrating ability in the adre-nalectomized rat. Clin. Sci. 28, 29–37 (1965).PubMedGoogle Scholar
  438. Silva, P., and M.S. Allan: Water intoxication due to high doses of synthetic oxytocin. Obstet, and Gynec. 27, 517–520 (1966).CrossRefGoogle Scholar
  439. Sinclair-Smith, B.C., J. Sisson, A.A. Kattus, A. Genecin, C. Monge, W. McKeever, and E.V. Newman: The effects of posterior pituitary extract and smoking on water, sodium and chloride excretion in normal subjects and in patients with congestive cardiac failures. Bull. Johns Hopk. Hosp. 87, 221–234 (1950).Google Scholar
  440. Skadhauge, E.: Effects of retrograde injections of vasopressin into the upper urinary tract of hydrated rats. Proc. Soc. exp. Biol. (N.Y.) 117, 807–810 (1964a).Google Scholar
  441. —: Effects of unilateral infusion of arginine-vasopressin into the portal circulation of the avian kidney. Acta endocr. (Kbh.) 47, 321–330 (1964b).Google Scholar
  442. —, and B. Schmidt-Nielsen: Renal function in domestic fowl. Amer. J. Physiol. 212, 793–798 (1967a).PubMedGoogle Scholar
  443. —: The renal medullary electrolyte and urea gradient in chickens and turkeys. Amer. J. Physiol. 212, 1313–1318 (1967b).PubMedGoogle Scholar
  444. Sloper, J. C.: The presence of a posterior pituitary-like structure in the hypothalamus after hypophysectomy. Acta endocr. suppl. 51, 101 (1960).Google Scholar
  445. Smith, F.M., and E.M. Mackay: Influence of posterior pituitary extracts on sodium balance in normal subjects and patients with diabetes insipidus. Proc. Soc. exp. Biol. (N.Y.) 34, 116–119 (1936).Google Scholar
  446. Smith, H.W. Principles of renal physiology. New York: Oxford University Press 1962.Google Scholar
  447. Smith, M. W.: The effect of hyaluronidase and cortisol on the inactivation of vasopressin by rat kidney slices. J. Endocrin. 24, 415–425 (1962).CrossRefGoogle Scholar
  448. Stein, M., R. Jinks, and I.A. Mirsky: The bioassay of pitressin and antidiuretic substances in blood and urine. Endocrinology 51, 492–501 (1952).CrossRefPubMedGoogle Scholar
  449. Steiness, I., and M. Lunding: Pronounced polyuria and natriuresis following surgical relief of urinary tract obstruction. Acta med. scand. 180, 159–166 (1966).CrossRefPubMedGoogle Scholar
  450. Sternberg, W.H., E. Färber, and C.E. Dunlap: Histochemical localization of specific oxi-dative enzymes. J. Histochem. Cytochem. 4, 266–283 (1956).CrossRefPubMedGoogle Scholar
  451. Stewart, J., and S.G. Spickett: Genetic variation in diuretic responses to water loads: Definition of some parameters of diuretic response and initial results of selection for these parameters. J. Endocr. 33, 417–428 (1965).CrossRefPubMedGoogle Scholar
  452. Studer, R.O., and W.D. Cash: Synthesis of 1acetyl8-arginine-vasopressin and a study of its effects in the rat pressor assay. J. biol. Chem. 238, 657–659 (1963).PubMedGoogle Scholar
  453. Stürmer, E., R.L. Hugtjenin, R.A. Boissonnas, and B. Berde: Deamino1-phenylalanine2-arginine8-vasopressin: A peptide with highly selective antidiuretic activity. Experientia (Basel) 21, 583 (1965).CrossRefGoogle Scholar
  454. Swingle, W. W., L. J. Brannick, S. J. Le Brie, and A.F. Parlow: A histaminelike component of commercial pitressin. Proc. Soc. exp. Biol. (N.Y.) 91, 223–226 (1956).Google Scholar
  455. Tata, P.S., and O.H. Gatter: Vasopressin studies in the rat. I. A sensitive bioassay for exogenous vasopressin. Pflügers Arch. ges. Physiol. 290, 279–285 (1966).CrossRefGoogle Scholar
  456. Theobald, G. W.: The allerged relation of hyperfunction of the posterior lobe of the hypophysis to eclampsia and the nephropathy of pregnancy. Clin. Sci. 1, 225–239 (1934).Google Scholar
  457. Thoenes, W.: Die Mikromorphologie des Nephron in ihrer Beziehung zur Funktion II. Klin. Wschr. 39, 827–839 (1961).CrossRefPubMedGoogle Scholar
  458. Thomas, S.: Washout and re-accumulation of urea during diuresis and antidiuresis. In: Hormones and the kidney. Ed. by P.C. Williams. Mem. Soc. Endocr. No. 13. New York: Academic Press 1963.Google Scholar
  459. —: Solute excretion in man during changing urine flow occurring spontaneously and induced by vasopressin injection. J. clin. Invest. 43, 1–10 (1964).CrossRefPubMedGoogle Scholar
  460. Thomson, W. B.: The effect of oxytocin and vasopressin and of phenylalanin3-oxytocin on the urinary excretion of water and electrolytes in man. J. Physiol. (Lond.) 150, 284–294 (1960).Google Scholar
  461. Thorn, N. A.: A densimetric method for assay of small amounts of antidiuretic hormone. J. exp. Med. 105, 585–590 (1957a).CrossRefPubMedGoogle Scholar
  462. —: Mammalian antidiuretic hormone. Physiol. Rev. 38, 169–191 (1958).PubMedGoogle Scholar
  463. —: Binding in vitro of highly-purified arginine-vasopressin and synthetic oxytocin to rat serum globulin. Acta endocr. (Kbh.) 30, 472–476 (1959a).Google Scholar
  464. —: Some chemical properties of antidiuretic material in the urine of rats. Acta endocr. (Kbh.) 32, 128–133 (1959b).Google Scholar
  465. —: Effect of highly purified arginine-and lysine-vasopressin on urinary excretion of sodium and potassium in hydrated rats. Acta endocr. (Kbh.) 32, 123–128 (1959c).Google Scholar
  466. —: Effects of arginine-, lysine-, and leucine-vasopressin on urinary osmolality and rate of urine flow in hydrated rats and dogs. Acta endocr. (Kbh.) 32, 134–141 (1959e).Google Scholar
  467. —: Antidiuretiske hormoner og deres Analoge. Thesis. København: Danish Science Press 1960a.Google Scholar
  468. —: An effect of antidiuretic hormone on renal excretion of calcium in dogs. Dan. med. Bull. 7, 109–112 (1960b).Google Scholar
  469. —: Effect of valyl3-oxytocin on renal excretion of sodium and potassium in hydrated rats and dogs. Dan. med. Bull. 7, 113–115 (1960c).PubMedGoogle Scholar
  470. —: Correlation between antidiuretic hormone effect and changes in renal excretion of calcium in rats and dogs. Acta endocr. (Kbh.) 38, 563–570 (1961).Google Scholar
  471. —, and B. Milewski: Effect of leucine-vasopressin (phenyl-alanine-oxytocin) on renal excretion of sodium and potassium in hydrated rats and dogs. Proc. Soc. exp. Biol. (N.Y.) 100, 267–269 (1959d).Google Scholar
  472. —, and I.L. Schwartz: Effect of antidiuretic hormone on washout curves of radioactive calcium from isolated toad bladder tissue. Gen. comp. Endocr. 5, 710 (1965).Google Scholar
  473. — — Renal excretion of natural lysine-vasopressin injected into rats (unpublished).Google Scholar
  474. —, and L. Silver: Chemical form of circulating antidiuretic hormone in rats. J. exp. Med. 105, 575–583 (1957b).CrossRefPubMedGoogle Scholar
  475. —, and I. Transbøl: Hyponatremia and bronchogenic carcinoma associated with renal excretion of large amounts of antidiuretic material. Amer. J. Med. 35, 257–268 (1963).CrossRefPubMedGoogle Scholar
  476. —, and N.B.S. Willumsen: Inactivation of arginine-and lysine-vasopressin by slices from different zones of the rat kidney and by rat liver slices. Acta endocr. (Kbh.) 44, 545–562 (1963).Google Scholar
  477. Thorp, R.H.: Posterior pituitary hormones. In: Methods in hormone research. Vol. 2, Bio-assay, pp. 495–516. Ed. by R. J. Dorfman. New York: Academic Press 1962.Google Scholar
  478. Thurau, K.: Renal hemodynamics. Amer. J. Med. 36, 698–719 (1964).CrossRefPubMedGoogle Scholar
  479. —, u. P. Deetjen: Bedeutung der Hämodynamik des Nierenmarkes für die Harnkonzentrierung. Pflügers Arch. ges. Physiol. 274, 567–580 (1962).CrossRefGoogle Scholar
  480. — u. P. Kramer: Hämodynamik des Nierenmarks. II. Wechselbeziehung zwischen vas-culärem Gegenstromsystem bei arteriellen Drucksteigerungen. Wasserdiurese und osmoti-scher Diurese. Pflügers Arch. ges. Physiol. 270, 270–285 (1960).CrossRefGoogle Scholar
  481. —, u. E. Wober: Zur Lokalisation der autoregulativen Widerstandsänderungen in der Niere. Pflügers Arch. ges. Physiol. 274, 553–566 (1962).CrossRefGoogle Scholar
  482. Torres, C., L. Schewitz, and V.E. Pollach: The effect of small amount of antidiuretic hormone on sodium and urate excretion in pregnancy. Amer. J. Obstet. Gynec. 94, 546–558 (1966).PubMedGoogle Scholar
  483. Trueta, J., A.E. Barclay, P.M. Daniel, K.J. Franklin, and M.M.L. Pritchard: Studies of the renal circulation. Oxford: Blackwell 1947.Google Scholar
  484. Ullmann, T.D., W. J. Czackes, and J. Menczel: Modification of the antidiuretic effect of vasopressin by acid and alkaline loads. J. clin. Invest. 44, 754–764 (1965).CrossRefPubMedGoogle Scholar
  485. Ullrich, K.J.: Das Nierenmark, Struktur, Stoffwechsel und Funktion. Ergebn. Physiol. 50, 433–489 (1959).CrossRefPubMedGoogle Scholar
  486. —, u. K.H. Jarausch: Untersuchungen zum Problem der Harnkonzentrierung und Verdünnung. Über die Verteilung der Elektrolyte (Na, K, Ca, Mg, Cl, anorg. Phosphat), Harnstoff, Aminosäuren und exogenem Kreatinin im Rinde und Mark der Hundeniere bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol. 262, 537–550 (1956).CrossRefGoogle Scholar
  487. —, and J. Marsh: Kidney, water and electrolyte metabolism. Ann. Rev. Physiol. 25, 91–142 (1963).CrossRefGoogle Scholar
  488. —, G. Pehling, A. Runz-Guinazu u. Espinar-Lafuente: Veränderung des Blutes bei der Passage durch das vasculäre Gegenstromsystem im Nierenmark. Pflügers Arch. ges. Physiol. 274, 64–65 (1961).Google Scholar
  489. Ullrich, K. J., G. Rumrich u. G. Fuchs: Wasserpenneabilität und transtubulärer Wasserfluß corticaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol. 280, 99–119 (1964).CrossRefGoogle Scholar
  490. —, and B. Schmidt-Nielsen: Urea transport in the collecting duct of rats on normal and low protein diet. Pflügers Arch. ges. Physiol. 295, 147–156 (1967).CrossRefGoogle Scholar
  491. Ussing, H.H., P. Kruhøffer, J. Hess Thaysen, and N.A. Thorn: The alkali metal ions in biology. Handbuch d. exper. Pharmacol., Ergänzungswerk Bd. 13. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  492. Valtin, H.: Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus. Effect of vasopressin and dehydration on the counter-current mechanism. J. clin. Invest. 45, 337–345 (1966a).CrossRefPubMedGoogle Scholar
  493. —: Effect of dehydration on urinary concentration in the absence of vasopressin. J. clin. Invest. 45, 1082 (1966b).CrossRefGoogle Scholar
  494. —: Hereditary hypothalamic diabetes insipidus in rats (a useful experimental model). Amer. J. Med. 42, 814–827 (1967).CrossRefPubMedGoogle Scholar
  495. Van Dyke, H.B., S.L. Engel, and K. Adamson, Jr.: Comparison of pharmacological effect of lysine and arginine vasopressin. Proc. Soc. exp. Biol. (N.Y.) 91, 484–486 (1956).Google Scholar
  496. —, W.H. Sawyer, and N.I. A. Overweg: Pharmacologic activities of the8-citrulline-analogues of oxytocin and vasopressin. Endocrinology 73, 637–639 (1963).CrossRefGoogle Scholar
  497. Van Eps, S.W.S., C.Ch.T.H. Romeny-Wachter, H. Schouten, and A.M. Strtjyker Bou-Dier: Renal concentration test in a tropical climate. Clin. chim. Acta 14, 637–644 (1966).CrossRefGoogle Scholar
  498. Verney, E.B.: Water diuresis. Irish J. med. Sci. 6, 377–402 (1954).CrossRefGoogle Scholar
  499. Vierling, A.F., J. B. Little, and E.P. Radford: Antidiuretic hormone bioassay in rats with heriditary hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 80, 211–220 (1967).CrossRefPubMedGoogle Scholar
  500. Vogel, G.: Daten zur Physiologie der Harnbereitung beim Truthuhn. Pflügers Arch. ges. Physiol. 278, 32–43 (1963).Google Scholar
  501. —, I. Stoeckert, W. Krüger, I. Dobberstein u. R. Winkler: Vergleichende Stop-Flow-Untersuchungen an Nieren mit geringem und wenig ausgebildetem System Henlescher Schleifen. Pflügers Arch. ges. Physiol. 238, 160–170 (1965a).Google Scholar
  502. —, u. I. Dobberstein: Harn und Harnbereitung bei terrestrisch lebenden Vögeln. Untersuchungen am Truthuhn (Meleagris pavo L.). Zbl. Vet.-Med. 12, 132–160 (1965b).Google Scholar
  503. — u. R. Winkler: Clearance und Stop-Flow-Untersuchungen an intakten und diabetes-insipidus-Ratten in Wasser-und osmotischer Diurese ohne und mit Zufuhr exogenen Vaso-pressins. Acta endocr. (Kbh.) 52, 239–254 (1966).Google Scholar
  504. Vorherr, H.: Über die Wirkung von synthetischem Oxytocin auf die Wasserdiurese der Ratte. Z. ges. exp. Med. 133, 602–608 (1960).CrossRefPubMedGoogle Scholar
  505. —: Zur Frage des Oxytocin-Vasopressin-Antagonismus an der Diurèse bei Mensch und Tier. Klin. Wschr. 42, 198–201 (1964).CrossRefPubMedGoogle Scholar
  506. Walker, A.M.: Experiments upon the relation between pituitary gland and water diuresis. Amer. J. Physiol. 127, 519–540 (1939).Google Scholar
  507. Ward, E.E., P. Richards, and O.H. Wrong: Urine concentration after acute renal failure. Nephron 3, 289–294 (1966).CrossRefPubMedGoogle Scholar
  508. Weller, C. P.: On the mechanism of the refractoriness to ADH induced by water deprivation in the rat. Acta physiol. lat.-amer. 15, 411–416 (1965).PubMedGoogle Scholar
  509. Weston, R.E., I.B. Hanenson, J. Grossman, G. A. Berdasco, and M. Wolfman: Natriuresis and chloruresis following pitressin-induced water retention in non-edematous patients: Evidence of homeostatic mechanism regulating body fluid volume. J. clin. Invest. 32,611–618 (1953).Google Scholar
  510. —, H.B. Horowitz, J. Grossman, I.B. Hanenson, and L. Leiter: Decreased antidiuretic response to betahypophamine in hyperthyroidism. J. clin. Endocr. 16, 322–337 (1956).CrossRefPubMedGoogle Scholar
  511. White, A.G., G. Rubin, and L. Leiter: Studies in oedema. III. The effect of pitressin on the renal excretion of water and electrolytes in patients with and without liver disease. J. clin. Invest. 30, 1287–1297 (1951).CrossRefPubMedGoogle Scholar
  512. White, H.L., and D. Rolf: Urine and papilla concentrations during transition from hypo-tonic to hypertonic urine. Amer. J. Physiol. 208, 397–400 (1965).PubMedGoogle Scholar
  513. Whittembury, G., N. Sugino, and A.K. Solomon: Effect of antidiuretic hormone and calcium on the equivalent pore radius of kidney slices from necturus. Nature (Lond.) 187, 699–701 (1960).CrossRefGoogle Scholar
  514. Wiederholt, M.H. Stolte, J.P. Brecht u. K. Hierholzer: Mikropunktionsuntersuchungen über den Einfluß von Aldosteron, Cortison und Dexamethason auf die renale Natrium-résorption adrenalektomierter Ratten. Pflügers Arch. ges. Physiol. 292, 316–333 (1966).CrossRefGoogle Scholar
  515. Wirz, H.: Die Druckverhältnisse in der normalen Niere. Schweiz, med. Wschr. 86, 377–382 (1956).Google Scholar
  516. —: Kidney, water and electrolyte metabolism. Ann. Rev. Physiol. 23, 577–606 (1961).CrossRefGoogle Scholar
  517. Witte, E., H. Reineck u. O.H. Gatter: Antidiurese and Diurese nach kleinen Tonephingaben bei der Ratte abhängig vom oralen NaCl-Angebot. Pflügers Arch. ges. Physiol. 274, 262–271 (1961).CrossRefGoogle Scholar
  518. Wolgast, M.: Regional renal blood flow measured with P32-labelled red cells and beta-sensitive semiconductor detectors. Acta physiol. scand. 68, suppl. 277, 223 (1966).Google Scholar
  519. Yamsane, Y., and K. Kunishige: Bioassay of ADH on experimental diabetes insipidus rats with a study on the ADH level in normal human plasma. Jap. Circulat. J. (Enh.) 30, 1381–1386 (1966).CrossRefGoogle Scholar
  520. Yoon, M.C., and S.K. Hong: Effect of prolonged bodily hydration on the renal concentrating operation. J. appl. Physiol. 16, 815–818 (1961).PubMedGoogle Scholar
  521. Yoshida, S., K. Motohashi, H. Ibayashi, and S. Okinaka: Method for the assay of anti-diuretic hormone in plasma with a note on the antidiuretic titer of human plasma. J. Lab. clin. Med. 62, 279–285 (1963).PubMedGoogle Scholar
  522. Yunibhand, P., u. U. Held: Der Einfluß der zunehmenden Hydropenie auf Nierenmark, Serum und Urin bei Albinoratten. Helv. physiol. pharmakol. Acta 23, 139–144 (1965).Google Scholar
  523. Zain-Ttl-Abedin, M.: Effect of a single large vasopressin injection upon the chemical composition of kidney. J. Physiol. (Lond.) 181, 67p–68p (1965).Google Scholar
  524. Zaoral, M., E. Kasafirek, J. Rudinger, and F. Sorm: Amino acids and peptides. III. Synthesis of 2-O-Methyltyrosine-and 2-O-Ethyltyrosine-lysine-vasopressin. Collection Czech. Chem. Commun. 30, 1809–1873 (1965).Google Scholar
  525. —, J. Kolc, and F. Sorm: Synthesis of D-arg8-and D-lys8-vasopressin. Collection Czech. Chem. Commun. 31, 382–383 (1966).CrossRefGoogle Scholar
  526. —,: Amino acids and peptides LXX. Synthesis of D-Arg8-and D-lys8-vasopressin. Collection Czech. Chem. Commun. 32, 1242–1249 (1967a).CrossRefGoogle Scholar
  527. —: Amino acids and peptides Lxxi. Synthesis of l-deamino-8-D-aminobutyrine-vasopressin, l-deamino-8-D-lysine-vasopressin, and l-deamino-8-D-argine-vasopressin. Collection Czech. Chem. Commun. 32, 1250–1257 (1967b).CrossRefGoogle Scholar
  528. —, V. Pliska, K. Rezabek, and F. Sorm: Synthesis of a highly effective analogue of lysine-vasopressin. Collection Czech. Chem. Commun. 28, 746–747 (1963a).Google Scholar
  529. —, and F. Sorm: Synthesis of two lysine-vasopressin analogues with protracted hormonal activity. Collection Czech. Chem. Commun. 28, 747–749 (1963b).Google Scholar
  530. —, and F. Sorm: Amino acids and peptides. LX. Synthesis of D-DAB8-vasopressin. Collection Czech. Chem. Commun. 31, 310–314 (1966).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Niels A. Thorn

There are no affiliations available

Personalised recommendations