Advertisement

Dispersion and Absorption of Sound in High Polymers

Chapter
Part of the Encyclopedia of Physics / Handbuch der Physik book series (HDBPHYS, volume 3 / 11 / 1)

Abstract

High polymer materials exist in the form of liquids, rubbers, and solids depending on the temperature, the length of the polymer chain and the degree of cross bonding to other polymer chains. Even in the solid state, materials such as polyethylene and nylon may be partly crystalline with liquid-like regions joining the crystalline regions. The liquid-like structure of rubbers accounts for their ability to stretch, and it is this feature, coupled with the use of carbon black, that causes them to wear so well in automobile tires. Plastics and rubbers are the materials that can take the greatest strains without fatigueing; and they outwear such materials as metals and glasses. Toughness, mechanical shock resistance, ultimate elongation and strength are determined by the ease with which the polymer molecules can be displaced without breaking the piece. It is no accident that polymer substances are used in body armor to deflect bullets.

Keywords

Internal Friction Natural Rubber Intrinsic Viscosity Characteristic Impedance Chain Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Gehman, WOODFORD and STAMBAUGH: Industr. Engng. Chem. 33, 1032 (1941).CrossRefGoogle Scholar
  2. 2.
    Dillon, PRETTYMAN and HALL: J. Appl. Phys. 15, 309 (1944).ADSCrossRefGoogle Scholar
  3. 2a.
    J. A. Greenwood and D. Tabor: Proc. Roy. Soc. Lond. 71, 989–1001 (1958).ADSCrossRefGoogle Scholar
  4. 3.
    Kuhn: Z. phys. Chem. B 42, 1 (1939).Google Scholar
  5. 4.
    Simha: J. Appl. Phys. 13, 201 (1942).Google Scholar
  6. 5a.
    America, June 30, 1955. J. Chem. Phys. 26, 465 (1957)Google Scholar
  7. 5b.
    A. J. Barlow and J. Lamb: Proc. Roy. Soc. Lond. A 253, 52 (1959).ADSGoogle Scholar
  8. 6.
    Litovitz, LYON and Peselnick: J. Acoust. Soc. Amer. 26, 566–577 (1954).ADSCrossRefGoogle Scholar
  9. 7.
    FERRY, SAWYER and ASHWORTH: J. Polymer Sci. 1947, 593, for a general review.Google Scholar
  10. 8.
    J. D. Ferry: J. Amer. Chem. Soc. 72, 3746 (1950).CrossRefGoogle Scholar
  11. 9.
    Nolle: J. Polymer Sci. 15, 1 (1950). — J. Appl. Phys. 19, 753 (1948).Google Scholar
  12. 10.
    Ivey, MROWCA and Guru: J. Appl. Phys. 20, 486 (1949).ADSCrossRefGoogle Scholar
  13. 11.
    Baker and HEISS: Bell Syst. Techn. J. 31, 306–356 (1952) (a review paper).Google Scholar
  14. 12.
    Mason and McSKIMIN: Bell Syst. Techn. J. 31, 122–171 (1952) (a review paper).Google Scholar
  15. 13.
    Baker, MASON and HEISS: J. Polymer Sci. 8, 129–155 (1952).ADSCrossRefGoogle Scholar
  16. 14.
    I. L. Hopkins: Trans. Amer. Soc. Mech. Engrs. 73, 195 (1951).Google Scholar
  17. 15.
    P. E. Rouse jr.: J. Chem. Phys. 21, No. 7, 1272–1280 (1953).Google Scholar
  18. 16.
    K. Sittel, P. E. Rouse jr. and E. D. BAILEY: J. Appl. Phys. 25, 1312–1320 (1954).ADSCrossRefGoogle Scholar
  19. 17.
    F. Bueche: J. Chem. Phys. 20, 1959 (1952); 22, 603 (1954).Google Scholar
  20. 17b.
    BRUNO H. ZIMM: J. Chem. Phys. 24, 269 (1956). See also Chap. I, Rheology, Vol. 3. New York, Academic Press 1960.Google Scholar
  21. 18.
    T. A. Lrzovitz and T. Lyon: J. Acoust. Soc. Amer. 26, 577–581 (1954).Google Scholar
  22. 19.
    For example, see H. Kolsiy, Stress Waves in Solids, (London: Oxford Press 1953), for a summary of a number of the papers. Later paper are: J. J. Benbow: Proc. Phys. Soc. Lond. B 67, 120 (1954).Google Scholar
  23. H. Kolsey: Proc. 2nd Int. Congress on Rheology. London: Butterworth Scientific Publ. 1954. H. KOLSxY: Phil. Mag. 45, 712 (1954).Google Scholar
  24. 20.
    E. A. Hoff, D. W. Robinson and A. H. Willbourn: Part. I. J. Polymer Sci. 13, 565 (1954);Google Scholar
  25. E. A. Hoff, D. W. Robinson and A. H. Willbourn:Part II 18, 161 (1955).Google Scholar
  26. 21.
    P. J. Flory: J. Amer. Chem. Soc. 65, 372 (1943).CrossRefGoogle Scholar
  27. 22.
    Fox and FLORY: J. Phys. Colloid. Chem. 55, 221 (1951).Google Scholar
  28. 23.
    Baker: Ind. Engng. Chem. 41, 511 (1949).Google Scholar
  29. 24.
    P. J. Flory: Principles of Polymer Chemistry. Ithaca, N.Y.: Cornell Univ. Press 1953.Google Scholar
  30. 25.
    J. C. Maxwell: On the Dynamic Theory of Gases. Phil. Trans. Roy. Soc. Lond. 157, 49–88 (1867).CrossRefGoogle Scholar
  31. 26.
    J. C. Maxwell Phil. Mag., Ser. IV 35, 129–145, 185–217 (1868).Google Scholar
  32. 27.
    Zur Theorie der inneren Reibung. J. reine angew. Math. 58, 130 (1874).Google Scholar
  33. 28.
    Über innere Reibung fester Körper, insbesondere der Metalle. Ann. d. Phys. 47, 671 (1892).Google Scholar
  34. 29.
    F. C. Roesler: Proc. Phys. Soc. Lond. B 68, 89 (1955). — F. C. Roesler and W. A. Twyman: Proc. Phys. Soc. Lond. B 68, 97 (1955).MathSciNetGoogle Scholar
  35. 30.
    See for example, B. Gross: Mathematical Structure of the Theories of Viscoelasticity. Paris: Hermann & Cie. 1953.Google Scholar
  36. 31.
    W. P. Mason: Measurement of the Viscosity and Shear Elasticity of Liquids by Means of a Torsionally Vibrating Crystal. Trans. Amer. Soc. Mech. Engrs. 69, 359–367 (1947).Google Scholar
  37. 33.
    M.E.Fine and W.C.Ellis:Amer.Inst.Mech.Engrs.J.Metals.3,761(1951). Compositions similar to rods d and e can be mand to have nearly a zero coefficiect of velocity.Google Scholar
  38. 34.
    W Roth and I. R. Rich: A New Method for Continuous Viscosity Measurement. General Theory of the Ultra-Visconson. J. Appl. Phys. 24, 940–950 (1953).ADSCrossRefGoogle Scholar
  39. 35a.
    W. P. MASON, W. O. BAKER, H. J. McSxiMiN and J. H. HEiss: Measurements of Shear Elasticity and Viscosity of Liquids at Ultrasonic Frequencies. Phys. Rev. 75, 936–946 (1949). This device was the work of H. J. McSxiMiN. It has recently been improved by incorporating the comparison circuit in the same block as the measuring circuit. This lowers the temperature stability requirement and also allows the measurement of the shear properties of a liquid under pressure.Google Scholar
  40. 35b.
    H.FE. BÖmmel and K. Dransfeld: Phys. Rev. 117, 1245–1252 (1960).ADSCrossRefGoogle Scholar
  41. 36.
    K. Sittel, P. E. Rouse jr. and E. D. Bailey: J. Appl. Phys. 25, 1312–1320 (1954).ADSCrossRefGoogle Scholar
  42. 37.
    For example, see E.P.MASON:Electromechanical Transducers and Wave Filters,p149.New York:D.Van Nostrand 1948Google Scholar
  43. 38.
    Smith, FERRY and SCHREMP: J. Appl. Phys. 20, 144 (1949).ADSCrossRefGoogle Scholar
  44. 39.
    E. R. Fitzgerald and J. D. Ferry: J. Colloid Sci. 8, 1 (1953). A commercial shear impedometer of this type is made by the Atlantic Research Corp., Alexandria, Va.Google Scholar
  45. 40.
    H. C. Rorden and A. Grieco: Measurement of Dynamic Internal Dissipation and Elasticity of Soft Plastics. J. Appl. Phys. 22, 842–845 (1951).ADSCrossRefGoogle Scholar
  46. 41.
    W. T. Read: Effect of Stress Free Edges in Plane Shear of a Flat Body. J. Appl. Mech. 17, 349–353 (1950).zbMATHGoogle Scholar
  47. 42.
    A. W. Nolle: J. Appl. Phys. 19, 753 (1948).Google Scholar
  48. 43.
    J. E. MCKINNEY, S. EDELMAN and R. S. MARVIN: J. Appl. Phys. 27, 425–431 (1956). — W. PHILLIPPOFF and J. BRODNYAN: J. Appl. Phys. 26, 846 (1955).Google Scholar
  49. 44.
    K.Newman,KRIGBAUM, F. Langier and FLORY: J. Polymer Sci. 14, 451–462 (1954).ADSCrossRefGoogle Scholar
  50. 47.
    F. J. Padden and T. W. Dewitt: J. Appl. Phys. 25, 1086–1091 (1954).ADSCrossRefGoogle Scholar
  51. 48.
    B. Gross [J. Polymer Sci. 20, 123 (1956)] has shown that a ladder network similar to Fig. 29d gives identical results to the Rouse-Bueche-Zimm theory. Ladder networks of this type were first introduced into the theory of viscoelastic polymers by BLIZZARD [J. Appl. Phys. 22, 730 (1951)]. The network energized at its midpoint appears to be closer to a physical representation of a polymer molecule than one energized on one end.Google Scholar
  52. 49.
    In the low frequency range the measurements were made by the tuning fork method of Fig. 14 by I. L. HOPKINS, Trans. Amer. Soc. Mech. Engrs. 73, 195 (1951) and J. Appl. Phys. 24, 1300 (1953), while the high frequency measurements were made by H. J. McSKIMIN using the shear wave device of Fig. 10.Google Scholar
  53. 49a.
    Similar results have been found by LITOVITZ and associates for a series of associated liquids. See “Absorption and Dispersion of Ultrasonic Waves” (KARL F. HERZFELD and THEODORE A. LiToviTz), pp. 479–483. chap. XII: Academic Press 1959.Google Scholar
  54. 50.
    MASON, BAKER, McSKIMIx and HEISS: Phys. Rev. 75, 936–946 (1949), Fig. 11.Google Scholar
  55. 51.
    R. S. Marvin: Proc. 2nd Int. Congress of Rheology, pp. 156–163. London: Butterworth Scientific Publications 1954.Google Scholar
  56. 52.
    For example, see E. Catsiff and A. V. Tosos1icy: J. Appl. Phys. 25, 1092–1097 (1954).Google Scholar
  57. 53.
    W. P. Mason, W. O. Baker, H. J. Mcskimin and J. H. Heiss: Phys. Rev. 77 (1948).Google Scholar
  58. 54a.
    T. A. LITOVITZ and T. LYON: J. Acoust. Soc. Amer. 26, 577–581 (1954).ADSCrossRefGoogle Scholar
  59. 54b.
    b K. F. Herzfeld and T. A. Litovitz: Absorption and Dispersion of Ultrasonic Waves. New York and London: Academic Press 1959. See Chap. XII and Sect. 109–113.Google Scholar
  60. 55.
    See J. D. Ferry, R. F. Landel and M. L. Williams: J. Appi. Phys. 26, 359–363 (1955).ADSCrossRefGoogle Scholar
  61. 56a.
    The internal friction and modulus changes for irradiated copper crystals are taken from a paper by D. O. Thompson and D.K. Holmes: J. Appl. Phys. 30, 525 (1959).Google Scholar
  62. 56b.
    The internal friction for a copper crystal as a function of frequency is taken from Fig. 99, p. 244, “Physical Acoustics and the Properties of Solids (W. P. MASON). New York: D. Van Nostrand 1958.Google Scholar
  63. 56c.
    The internal friction against frequency for soda lime glass is given by R. L. Wegel and H. Walther: Physics 6, 141 (1935). The variation with temperature in Fig. 10, 17, Ref. 56 b.Google Scholar
  64. 57.
    T. G. Fox and P. J. Flory: J. Amer. Chem. Soc. 70, 2384–2395 (1948).CrossRefGoogle Scholar
  65. 58.
    L. J. Zapas, S. L. Shufter and T. W. Dewitt : J. Polymer. Sci. 18, 245–257 (1955)ADSCrossRefGoogle Scholar
  66. 59.
    W. Baker, R.F. Curtis and J. F. W. Mcomie: J. Chem. Soc. Lond. 1952, 1774Google Scholar
  67. 60.
    W. Phillipoff and J. Brodnyan: J. Appl. Phys. 26, 846 — 849 (1955).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1961

Authors and Affiliations

There are no affiliations available

Personalised recommendations