Skip to main content

The wall boundary layer behind a moving shock wave

  • Chapter
Grenzschichtforschung / Boundary Layer Research

Abstract

If a shock wave advances into a stationary fluid bounded by a wall, a boundary layer is established along the wall behind the wave. Some characteristics of this boundary layer are investigated herein. The problem is reduced to a steady state by using a coordinate system wherein the shock is stationary (fig. 1). In this coordinate system the fluid and wall both approach the shock with the same velocity, u w . The shock reduces the fluid velocity to u e while the wall velocity is unaffected, resulting in a boundary layer for x > 0. The laminar case has been treated in [1] to [8]and the turbulent case has been treated in [3]. The purposes of the present paper Fig. 1. are to present modifications of the solutions of [2] and [3] which make them more applicable for the strong wave case, to investigate further the wall surface temperature variation and to discuss some experimental transition results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollyer, R. N., Jr.: A Study of Attenuation in the Shock Tube. Eng. Res. Inst., Univ. of Michigan, July 1, 1953. Contract N6-ONR-232-TO IV.

    Google Scholar 

  2. Minels, H.: Laminar Boundary Layer Behind Shock Advancing into Stationary Fluid. NACA TN 3401, 1955.

    Google Scholar 

  3. Mirels, H.: Boundary Layer Behind Shock or Thin Expansion Wave Moving into Stationary Fluid. NACA TN 3712, 1956.

    Google Scholar 

  4. Bort, N., and R. Hartunian: On the Heat Transfer to the Walls of a Shock Tube. Grad. School of Aero. Eng., Cornell Univ., Nov. 1955. Contract AF 33-(038)-21406.

    Google Scholar 

  5. Bershader, D., and J. Allport: On the Laminar Boundary Layer Induced by a Traveling Shock Wave. Princeton Univ., Dept. of Physics, Tech. Rept. II-22 (May 1956).

    Google Scholar 

  6. Cohen, N. B.: A Power Series Solution for the Unsteady Laminar Boundary-Layer Flow in an Expansion Wave of Finite Width Moving Through a Gas Initially at Rest. NACA TN 3943, 1957.

    Google Scholar 

  7. Trimpi, R. L., and N. B. Cohen: An Integral Solution to the Flat-Plate Laminar Boundary Layer Flow Existing Inside and After Expansion Waves and After Shock Waves Moving into Quiescent Fluid with Particular Application to the Complete Shock Tube Flow. NACA TN 3944, 1957.

    Google Scholar 

  8. Bromberg, R.: Use of the Shock Tube Wall Boundary Layer in Heat Transfer Studies. Jet Propulsion. Sept. 1956.

    Google Scholar 

  9. Sghlrcrrrrng, H.: Boundary Layer Theory. McGraw Hill Book Co., Inc. (1955), p. 406.

    Google Scholar 

  10. Eckert, E. R. G.: Engineering Relations for Friction and Heat Transfer to Surfaces in High Velocity Flow. Jour. Aero. Sci., 22 (1955), No. 8.

    Google Scholar 

  11. Chabar, A. J., and R. J. Emnrca: Measurement of Wall Temperature and Heat Flow in a Shock Tube. Jour. Appl. Phys. 26, 779–780 (1955), No. 6.

    Google Scholar 

  12. Vidal, R.: Model Instrumentation Techniques for Heat Transfer and Force Measurements in a Hypersonic Shock Tunnel. Cornell Aero. Lab. Rept. AD-917-A-1 WADC-TN-56–315. Feb. 1956.

    Google Scholar 

  13. Rabrnowicz, J., M. E. Jessey and C. A. Bartsch: Resistance Thermometer for Heat Transfer Measurements in a Shock Tube. GALCIT Hypersonic Res. Proj. Memo. No. 33, July 1956.

    Google Scholar 

  14. Boyer, A.: UTI A Tech. Rept. No. 15—To be published.

    Google Scholar 

  15. Chabai, A. J.: Private communication. June 1957.

    Google Scholar 

  16. Anon.: Memorandum for the record. Cornell Aero. Lab. November 3, 1954.

    Google Scholar 

  17. Trimpz, R. L., and N. B. Cohen: A Theory for Predicting the Flow of Real Gases in Shock Tubes with Experimental Verification. NACA TN 3375, 1955.

    Google Scholar 

  18. Mirels, H.: Attenuation in a Shock Tube Due to Unsteady Boundary-Layer Action. NACA TN 3278, 1956.

    Google Scholar 

  19. Mirels, H., and W. H. Braun: Nonuniformities in Shock-Tube Flow Due to Unsteady Boundary-Layer Action. NACA TN 4021, 1957.

    Google Scholar 

  20. Rosenthal, D.: a. R. Scumerber; Weld. J., April 1938.

    Google Scholar 

  21. Rosenthal, D.: Weld. J., May 1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag OHG., Berlin/Göttingen/Heidelberg

About this chapter

Cite this chapter

Mirels, H. (1958). The wall boundary layer behind a moving shock wave. In: Görtler, H. (eds) Grenzschichtforschung / Boundary Layer Research. Internationale Union für theoretische und angewandte Mechanik / International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45885-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45885-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02273-2

  • Online ISBN: 978-3-642-45885-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics