Skip to main content

Part of the book series: Handbuch der Physik / Encyclopedia of Physics ((PHYSIK 8,volume 8 / 42))

Abstract

The study of the angular distribution and correlation of nuclear radiations is applied to two broad classes of phenomena. The first of these, to which the term “angular correlation” is normally applied, concerns the decay, by the emission of successive radiationsl, of radioactive nuclei, and of nuclei which have been produced in unstable excited states. These radiations may be detected at particular directions with respect to the decaying nuclei and the relative probability of detection of the cascade is then a function, inter alia, of these directions. In addition to this directional correlation, which refers to directions of emission only, other angle variables may be involved, e.g. if the efficiency of the detectors of radiation depends also on the state of polarisation of the radiations, and in such cases the appropriate correlation functions are more complex functions of several angles. Furthermore, if the original system of decaying nuclei is not isotropic, in a statistical sense, or if the cascade of radiation occurs in the presence of some anisotropic disturbance, such as an extra-nuclear electromagnetic field, then the correlation function will involve angles relating the directions of emission and of polarisation to those characterising the original or external anisotropies, as well as angles characteristic of the relative directions of emission and polarisation themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

General references, survey articles and reviews

  1. Wigner, E. P.: Gruppentheorie. Braunschweig 1931.

    Google Scholar 

  2. Coxnon, E. U., and G. H. Shortley: Theory of Atomic Spectra. Cambridge 1935.

    Google Scholar 

  3. Racah, G.: Theory of Complex Spectra. Phys. Rev. 62, 438; 63, 367 (1942) (transformation theory used for the analysis of complex spectra).

    Google Scholar 

  4. Spiers, J. A.: Directional Effects in Radioactivity. Nat. Res. Council Canada, Publ. No. 1925, 90 pp., 1949 (extensive discussion of properties of angular-momentum states with application to radioactive emissions).

    Google Scholar 

  5. Deutsch, M.: Angular Correlations in Nuclear Reactions. Rep. Progr. Phys. (Physical Society London) 14, 196–226 (1950) (early survey of experiments involving angular correlations, including an account of elementary theory and a description of experimental technique).

    Google Scholar 

  6. Blatt, J. M., and L. C. Biedenharn: The Angular Distribution of Scattering and Reaction Cross-Sections. Rev. Mod. Phys. 24, 258–272 (1952) (theory of reactions with unpolarised particles. Racah algebra and S-matrix formalism is used).

    Google Scholar 

  7. Biedenharn, L. C., J. M. Blatt and M. E. Rose: Some Properties of Racah and Associated Coefficients. Rev. Mod. Phys. 24, 249–257 (1952).

    Article  ADS  Google Scholar 

  8. Fano, U.: Statistical Matrix Techniques and Their Applications to the Direction Correlation of Radiations. Nat. Bur. Standards Report NBS 1214. Phys. Rev. 90, 577 (1952, 1953) (detailed formal development of the statistical-tensor and efficiency-tensor methods).

    Google Scholar 

  9. Biedenharn, L. C., and M. E. Rose: Theory of Angular Correlation of Nuclear Radiations. Rev. Mod. Phys. 25, 729–777 (1953) (comprehensive exposition of theory of correlations in cascade radiations, involving a, ß and y radiations and conversionelectrons—using Racah formalism mainly

    Google Scholar 

  10. Frauenfelder, H.: Angular Correlation of Nuclear Radiation. Ann. Rev. Nucl. Sci. 2, 129–162 (1953) Stanford (early survey of experiments and dealing mainly with cascade correlations).

    Google Scholar 

  11. Coester, F.: Gamma-Gamma Angular Correlations. Argonne Nat. Lab. Report ANL 5316, 29 pp., 1954 (concise presentation of statistical-tensor and efficiency-tensor method).

    Google Scholar 

  12. Jahn, H. A., and J. Hope: Symmetry Properties of the Wigner 9-j Symbol. Phys. Rev. 93, 318 (1954).

    Article  ADS  MATH  Google Scholar 

  13. Huby, R.: Stripping Reactions. Progr. Nucl. Phys. 3, 177 (1953) London (survey of theoretical and experimental investigations, including results of deuteron-stripping reactions and some allied processes).

    Google Scholar 

  14. Siegbahn, K., editor: Beta-and Gamma-Ray Spectroscopy. Amsterdam 1955.

    Google Scholar 

  15. Frauenfelder, L.: Angular Correlations, Chap. XIX, pp. 531–599 (general survey of cascade correlations including the effects of extra-nuclear perturbations—mainly experimental).

    Google Scholar 

  16. Steffen, R. M.: Extra-nuclear Effects on Angular Correlations of Nuclear Radiations. Adv. Physics (Phil. Mag.) 4, No. 15, 293-362 (1955) (elementary theory and comprehensive survey of experiments).

    Google Scholar 

  17. Satchler, G. R.: Some Aspects of Nuclear Structure being Some Applications of the Group-Theoretic Properties of Angular Momentum Eigenstates. Thesis Oxford University 1955 (theory of angular correlations using statistical tensors).

    Google Scholar 

  18. Edmonds, A. R.: Angular Momentum in Quantum Mechanics. CERN 55–26 Copenhagen 1955 (detailed presentation of definitions and mathematical relationships involving functions of angular-momentum variables).

    Google Scholar 

  19. Rose, M. E.: Multipole Fields, 99 pp. New York 1955 (description of the electromagnetic field with particular emphasis given to internal conversion and emission of radiation using the transformation properties of the multipole fields).

    Google Scholar 

  20. Feenberg, E., and G. E. Pake: Notes on the Quantum Theory of Angular Momenta, 54 pp. Cambridge, Mass. 1953 (contains a discussion of angular-momentum transformations together with applications to nuclear moments).

    Google Scholar 

  21. Hamilton, D. R.: On Directional Correlation of Successive Quanta. Phys. Rev. 58, 122 (1940) (first treatment of y-y correlations, using time-dependent perturbation theory).

    Google Scholar 

  22. Goertzel, G.: Angular Correlation of y-Rays. Phys. Rev. 70, 897 (1946) (extension of the treatment in [20],including the first investigation into the effects of external fields on the angular correlation).

    Google Scholar 

  23. Yang, C. N.: On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948) (some general theorems concerning angular distributions, using group-theoretical methods).

    Google Scholar 

  24. Gardner, J. W.: Directional Correlation between Successive Internal-Conversion Electrons. Proc. Phys. Soc. Lond. A 62, 763 (1949).

    Article  ADS  Google Scholar 

  25. Fierz, M.: Zur Theorie der Multipolstrahlung. Heiv. phys. Acta 22, 489 (1949).

    MATH  Google Scholar 

  26. Falkoff, D. L., and G. E. Uhlenbeck: On the Directional Correlation of Successive Nuclear Radiations. Phys. Rev. 79, 323 (1950) (extension of early theory to arbitrary radiations).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Spiers, J. A.: On the Directional Correlation of Successive Nuclear Radiations. Letter in Phys. Rev. 80, 491 (1950) (generalisation of treatment of [25],using only the properties of angular momentum—a summary of the theory developed in [4]).

    MathSciNet  ADS  Google Scholar 

  28. Racah, G.: Directional Correlation of Successive Nuclear Radiations. Phys. Rev. 84, 910 (1951) (formalism of the tensor parameters of radiation).

    Article  ADS  MATH  Google Scholar 

  29. Lloyd, S. P.: The Angular Correlation of Two Successive Nuclear Radiations. Phys. Rev. 85, 904 (1952) (general formulation by means of group-theoretical methods, summarising the author’s previous work).

    Article  ADS  MATH  Google Scholar 

  30. Coester, F., and J. M. Jauch: Theory of Angular Correlations. Hell,. phys. Acta 26, 3 (1953) (formalism of statistical and efficiency tensors).

    MathSciNet  MATH  Google Scholar 

  31. Satchler, G. R.: The Angular Correlation of Three Nuclear Radiations. Phys. Rev. 94, 1304 (1954).

    Article  ADS  MATH  Google Scholar 

  32. Myers, R. D.: The Angular Distribution of Resonance Disintegration Products. Phys. Rev. 54, 361 (1938) (early use of symmetry arguments with regard to nuclear reactions involving isolated resonance levels).

    Article  ADS  Google Scholar 

  33. Breit, G., and B. T. Darling: Note on Calculation of Angular Distributions in Resonance Reactions. Phys. Rev. 71, 402 (1947) (two general theorems concerning properties of angular-momentum transformation coefficients).

    Article  ADS  MATH  Google Scholar 

  34. Eisner, E., and R. Sachs: Note on Angular Distributions in Nuclear Reactions. Phys. Rev. 72, 680 (1947) (general theorem with regard to complexity of angular distributions).

    Article  ADS  Google Scholar 

  35. Wigner, E. P., and L. Eisenbud: Higher Angular Momenta and Long-Range Interaction in Resonance Reactions. Phys. Rev. 72, 29 (1947) (formal theory of reactions and scattering in terms of the compound nucleus).

    Article  ADS  Google Scholar 

  36. Blatt, J. M., and V. F. Weisskopff: Theoretical Nuclear Physics, Chap. VIII, IX and X, p. 311— 564. New York 1952 (nuclear reactions).

    Google Scholar 

  37. Coester, F.: The Symmetry of the S-Matrix. Phys. Rev. 89, 619 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Konopinski, E. J., and G. E. Uhlenbeck: On the Fermi Theory of ß-Radioactivity. Phys. Rev. 60, 308 (1941) (early presentation of the theory).

    Article  ADS  MATH  Google Scholar 

  39. Falkoff, D. L., and G. E. Uhlenbeck: On the Beta-Gamma Angular Correlation. Phys. Rev. 79, 334 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Groot, S. R. DE, and H. A. Tolhoek: On the Theory of Beta-Radioactivity. Physica, Haag 16, 456 (1950) (one of the early treatments of the beta-neutrino angular correlation).

    Article  ADS  MATH  Google Scholar 

  41. Spiers, J. A., and R. J. Blin-Stoyle: A Formulation of Beta-decay Theory for Forbidden Transitions of Arbitrary Order. Proc. Phys. Soc. Lond. A 65, 801, 809 (1952) (formulation using a representation characterising the electron-plus-neutrino angular momenta).

    ADS  Google Scholar 

  42. Kofoed-Hansen, O.: Theoretical Angular Correlations in Allowed Beta Transitions. Dan. Mat.-Fys. Medd. 28 No. 9, 19 pp. (1954) (transformation of fl-neutrino angular correlation into functions of the recoil particle).

    Google Scholar 

  43. Rose, M. E.: The Theory of Allowed ß-Decay, Chap. IX, pp. 273–292. 1955.

    Google Scholar 

  44. Konopinski, E.: The Theory of Forbidden ß-Decay, Chap. X, pp. 292–314. 1955.

    Google Scholar 

  45. Kofoed-Hansen, O.: Neutrino Recoil Experiments, Chap. XI, pp. 357–373. 1955.

    Google Scholar 

  46. Morita, M.: Explicit Formulae of Beta-Gamma Directional Correlation. Progr. Theor. Phys. 14, 27 (1955)(generalisation of earlier work of

    Article  ADS  MATH  Google Scholar 

  47. Hauser, I.: Directional Correlation of i4-Rays, 97 pp. 1956. Thesis State University of Iowa

    Google Scholar 

  48. Alder, K.: Contribution to the Theory of Directional Correlation. Rely. phys. Acta 25, 235 (1952) (early treatment of perturbations due to external fields, using Racah algebra).

    MATH  Google Scholar 

  49. Abragam, A., and R. V. Pound: Influence of Electric and Magnetic Fields on Angular Correlations. Phys. Rev. 92, 943 (1953) (contains generalisations of earlier treatments in [21] and [60] and deals with specific examples).

    Google Scholar 

  50. Alder, K., H. Albers-Schönberg, E. Heer and T. B. Novey: The Measurement of Nuclear Moments of Excited States by Angular Correlation Methods. Hely. phys. Acta 26, 761 (1953) (particular discussion is given of experimental arrangements).

    Google Scholar 

  51. Coester, F.: Influence of Extranuclear Fields on Angular Correlations. Phys. Rev. 93, 1304 (1954) (external fields using density matrices).

    Article  ADS  MATH  Google Scholar 

  52. Frankel, S.: The Effect of Scattering on Angular Correlation Measurements. Phys. Rev. 83, 673 (1951) (corrections for finite solid angles of detectors and multiple scattering in source).

    Article  ADS  Google Scholar 

  53. Rose, M. E.: The Analysis of Angular Correlation and Angular Distribution Data. Phys. Rev. 91, 610 (1953) (corrections for finite solid angles of detectors and discussion of counting rates and errors).

    Article  ADS  MATH  Google Scholar 

  54. Breitenberg, E.: Remarks on the Least-Square Reductions of Angular Correlations Data. Proc. Phys. Soc. Lond. A 69, 489 (1956).

    Article  ADS  Google Scholar 

  55. Mitchell, A. C. G.: The Coincidence Method, Chap. VII, pp. 201–223. 1955.

    Google Scholar 

  56. Bell, R. E.: Measurement by Delayed Coincidences. Comparison Methods, Chap. XVIII, pp. 494–520. 1955.

    Google Scholar 

  57. Wolfenstein, L.: Theory of Proposed Reactions Involving Polarised Protons. Phys. Rev. 75, 1664 (1949).

    Article  ADS  MATH  Google Scholar 

  58. Fano, U.: Remarks on the Classical and Quantum-Mechanical Treatment of Partial Polarization. J. Opt. Soc. Amer. 39, 859 (1949) (on the use of STOKES’ parameters in the treatment of y-radiation).

    Article  ADS  Google Scholar 

  59. Blin-Stoyle, R. J.: Polarised Nuclear Reactions. Proc. Phys. Soc. Lond. A 64, 700 (1951).

    Article  ADS  MATH  Google Scholar 

  60. Dalitz, R. H.: On Polarised Particle Beams. Proc. Phys. Soc. Lond. A 65, 175 (1952) (use of statistical tensors in the designation of polarisation).

    Article  ADS  MATH  Google Scholar 

  61. Simon, A., and T. A. Welton: Production of Polarized Particles in Nuclear Reactions. Phys. Rev. 90, 1036 (1953).

    Article  ADS  MATH  Google Scholar 

  62. Simon, A.: Theory of Polarized Particles and y-Rays in Nuclear Reactions. Phys. Rev. 92, 1050 (1953) ([84],extended to include polarised initial beams).

    Article  ADS  MATH  Google Scholar 

  63. Lakin, W.: Spin Polarization of the Deuteron. Phys. Rev. 98, 139 (1955).

    Article  ADS  MATH  Google Scholar 

  64. Satchler, G. R.: Polarisation in Nuclear Reactions. Proc. Phys. Soc. Lond. A 68, 1041 (1955) (results for polarisation in the L-representation).

    Article  ADS  MATH  Google Scholar 

  65. Tolhoee, H. A.: Electron Polarization, Theory and Experiment. Rev. Mod. Phys. 28, 277 (1956) (description of polarisation using density matrices, being a summary of previous work by author—represents a survey of theory and experiment involving electron polarisation).

    Article  ADS  Google Scholar 

  66. Serber, R.: The Production of High-Energy Neutrons by Stripping. Phys. Rev. 72, 1008 (1947).

    Article  ADS  Google Scholar 

  67. Nuclear Reactions. Proc. Roy. Soc. Lond., Ser. A 208, 559 (1951).

    Google Scholar 

  68. Bhatia, A. B., K. Huang, R. Huby and H. C. Newns: Angular Distribution in (d,p) and (d, n) Reactions. Phil. Mag. 43, 485 (1952) (Born-approximation calculations).

    Google Scholar 

  69. Satchler, G. R., and J. A. Sriers: Angular Distribution of y-Radiation following a Deuteron-Stripping Reaction. Proc. Phys. Soc. Lond. A 65, 980 (1952).

    Article  ADS  Google Scholar 

  70. Huby, R.: Theory of the Deuteron-Stripping Reaction. Proc. Roy. Soc. Lond., Ser. A 215, 385 (1952).

    Article  ADS  MATH  Google Scholar 

  71. Dalitz, R. H.: Some Features of the Deuteron-Stripping Process. Proc. Phys. Soc. Lond. A 66, 28 (1953).

    Article  ADS  Google Scholar 

  72. Grant, I. P.: Theory of (d, p) and (d, n) Reactions. Proc. Phys. Soc. Lond. A 67, 981; A 68, 244 ( 1954, 1955 ).

    ADS  Google Scholar 

  73. Horowitz, J., and A. M. L. Messiah: Sur les Reactions (d, p) et (d, n). J. Phys. Radium 14, 695 (1955).

    Article  Google Scholar 

  74. Tobocman, W., and M. H. Kalos: Numerical Calculation of (d, p) Angular Distributions. Phys. Rev. 97, 132 (1955)

    Article  ADS  Google Scholar 

  75. Austern, N., S. T. Butler and H. Mcmanus: Angular Distributions from (n, p) Nuclear Reactions. Phys. Rev. 92, 350 (1953) (treatment in terms of direct nucleon-nucleon interaction).

    Google Scholar 

  76. Satchler, G. R.: Gamma-Radiation following Surface Scattering of Nucleons. Proc. Phys. Soc. Lond. A 68, 1037 (1955).

    Article  ADS  Google Scholar 

  77. Brink, D. M.: Inelastic Scattering of Neutrons by Deformed Nuclei. Proc. Phys. Soc. Lond. A 68, 994 (1955).

    Article  ADS  Google Scholar 

  78. Hayakawa, S., and S. Yoshida: Inelastic Scattering of Neutrons by Rotational Excitation. Progr. Theor. Phys. 14, 1 (1955).

    Article  ADS  MATH  Google Scholar 

  79. Yoshida, S.: The Inelastic Scattering of Nucleons by the Surface Interaction. Proc. Phys. Soc. Lond. A 69, 668 (1956).

    Article  ADS  Google Scholar 

  80. Jaeger, J. C., and H. R. Hulme: The Internal Conversion of y-Rays with the Production of Electrons and Positrons. Proc. Roy. Soc. Lond., Ser. A 148, 708 (1935) (calculation of electric dipole and quadrupole coefficients using Dirac hydrogen-like wave functions for Z = 84).

    Google Scholar 

  81. Rose, M. E.: Internal Pair Formation. Phys. Rev. 76, 678 (1949) (Born-approximation calculation for radiation of arbitrary multipole type).

    Google Scholar 

  82. Dalitz, R. H.: On Radiative Corrections to the Angular Correlation in Internal Pair Creaton. Proc. Roy. Soc. Lond., Ser. A 206, 521 (1951) (detailed calculation for monopole transition).

    Google Scholar 

  83. g]Wilson, R.: Internal Pair Formation, Chap. XX, p. 636–649 1955 (survey of theory and experiment).

    Google Scholar 

  84. Ter-Martirosyan, K. A.: The Excitation of Nuclei by the Coulomb Field of Charged Particles. J. exp. theor. Phys. USSR. 22, 284 (1952) (in Russian) (semi-classical treatment for dipole excitation).

    Google Scholar 

  85. Bohr, A., and B. R. Mottelson: Collective and Individual Particle Aspects of Nuclear Structure, Appendix VI. Dans. Mat.-Fys. Medd. 27, No. 16 (1953) (contains a summary of the above calculation).

    Google Scholar 

  86. Alder, K., and A. Winther: The Theory of Coulomb Excitation of Nuclei. Letters in Phys. Rev. 91, 1578; 96, 237 (1953, 1954) (application of [103] to correlation with y-rays following Coulomb excitation).

    Google Scholar 

  87. Breit, G., M. E. Ebel and J. E. Russell: Gamma-Ray Angular Distribution in Coulomb Excitation. Phys. Rev. 101, 1504 (1956) (quantum mechanical calculation for quadrupole excitation).

    Google Scholar 

  88. Biedenharn, L. C., J. L. Mchale, R. M. Thaler and M. GOLDSTEIN: Quantum Calculation of Coulomb Excitation. Phys. Rev. 100, 376; 101, 662; 102, 1567 ( 1955. 1956 ).

    Google Scholar 

  89. Breit, G., R. L. Gluckstern and J. E. Russell: Reorientation Effect in Coulomb Excitation. Phys. Rev. 103, 727 (1956).

    Article  ADS  Google Scholar 

  90. Hofstadter, R.: Electron Scattering and Nuclear Structure. Rev. Mod. Phys. 28, 214 (1956).

    Article  ADS  Google Scholar 

  91. Condon, E. U., and G. H. Shortley: Theory of Atomic Spectra, Tables 13, 2, 33, 43 Cambridge (1935) [algebraic tables of (a α b ß|c γ)b=1\2, 1, 3\2,2)

    Google Scholar 

  92. Biedenharn, L. C., J. M. BLATT and M. E. ROSE: Some Properties of the Racah and Associated Coefficients. Rev. Mod. Phys. 24, 249 (1952) [algebraic tables of W(1L1’L’ s k) for s= 1\2, 1, 3\2, 2].

    Google Scholar 

  93. Alder, K.: Contribution to the Theory of Directional Correlation. HeIv. phys. Acta 25, 253 (1952) (general formulae); pp. 254–257 (algebraic table of Racah coefficients).

    Google Scholar 

  94. Yamada, M., and M. Morita: On the fl-Ray Angular Correlation. Prog. Theor. Phys. 8, 444 (1952) [algebraic table of (aα, 3ß| cγ.)

    Google Scholar 

  95. Biedenharn, L. C.: Tables of the Racah Coefficients. Oak Ridge Nat. Laboratory, ORNL 1098, 1952 [algebraic tables of W(lLl’L’ sk) for s= 1\2, 1, 3\2, 2, and numerical tabels for s = 0 to 3 in half-integral steps and k= 0, 1, 2,?, 8).

    Google Scholar 

  96. Biedenharn, L. C.: Revised Z-Tables of the Racah Coefficients. ORNL 1501, 1953 (numerical tables of Z(1L1’L’ sk) for same values of parameters as in [5]).

    Google Scholar 

  97. Simon, A., J. H. Van Der Sluis and L. C. Biedenharn: Tables of the Racah Coefficients. ORNL 1679, 1952.

    Google Scholar 

  98. Simon, A.: Numerical Table of the Clebsch-Gordan Coefficients. ORNL 1718, 1952.

    Google Scholar 

  99. Ferentz, M., and N. Rosenzweig: Table of F-Coefficients. Argonne Nat. Laboratory, ANL 5234, 1953 [numerical tables of F(LL’j) for integral and half-integral values of j1 and j from 0 to 12).

    Google Scholar 

  100. Sharp, W. T., J. M. Kennedy, B. J. Sears and M. G. Hoyle: Tables of Coefficients for Angular Distribution Analysis. Atomic Energy of Canada, Limited, AECL 97, 1953 [includes numerical tables of Z(1L1’L’ sk), Z 1 (LjL’j 1k) (related to the F-coefficients)\(W(lLlL;sk)W(j{j_1}j{j_1};Lk),\left( {\begin{array}{*{20}{c}} {abc} \\ {{a^,}bc} \\ {ghk} \end{array}} \right),\left( {\begin{array}{*{20}{c}} {abc} \\ {aef} \\ {kk1} \end{array}} \right),(lo,{l^,}o|ko),and(Ll,L' - 1|KO)\)

    Google Scholar 

  101. Kennedy, K. M., B. J. Sears and W. T. Sharp: Tables of X-Coefficients, AECL 106, 1954 (numerical tables of the 9-j symbol).

    Google Scholar 

  102. Arima, A., H. Horie and Y. Tanabe: Generalised Racah Coefficient and its Applications. Progr. Theor. Phys. 11, 143 (1954) (definitions and useful formulae involving the 9-j symbol).

    Google Scholar 

  103. Sato, M.: Tables of W(abcd; ef) for e=3, 7\2, 4 and 2. Progr. Theor. Phys. 13, 405 (1955).

    Google Scholar 

  104. Kennedy, L. M., and M. J. Cliff: Transformation Coefficients Between LS and j-j I / lI z 11 coupling. AECL 224, 1955 (numerical tables of \(\hat L\hat S{\hat j_1}{\hat j_2}\left( {\begin{array}{*{20}{c}} {{l_1}\frac{1}{2}{j_1}} \\ {{l_2}\frac{1}{2}{j_2}} \\ {LSJ} \end{array}} \right)\),for l1 and l2 not exceeding 5.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1957 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Devons, S., Goldfarb, L.J.B. (1957). Angular Correlations. In: Kernreaktionen III / Nuclear Reactions III. Handbuch der Physik / Encyclopedia of Physics, vol 8 / 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45878-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45878-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45880-4

  • Online ISBN: 978-3-642-45878-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics