Advertisement

The Zeeman Effect

Chapter
Part of the Handbuch der Physik / Encyclopedia of Physics book series (HDBPHYS, volume 5 / 28)

Abstract

In 1896 at Leiden (Holland) Pieter Zeeman (1865–1943) discovered the influence of an external homogeneous magnetic field on the frequencies of spectral lines emitted by a light source, placed in that magnetic field. He published his first experiments in the proceedings of the Royal Academy of Amsterdam in 1896 2. In this paper he points out that his work was stimulated by the experiments already done before by Faraday. In 1845 Faraday discovered the influence of a magnetic field on the plane of polarisation of linearly polarised light3. At that time already Faraday was convinced of the fact that light and magnetism were closely related. Accordingly, Maxwell describes4 how Faraday devoted his last experiments to the study of the influence of a magnetic field on the light emitted by a light source, placed in the magnetic field. However he did not come to a result, because of the imperfection of his experimental mounting and the smallness of the effect. After him, other research workers tried to repeat his experiment, but they failed too. Zeeman was the first who came to a definite result2. Just as Faraday he put a bunsen flame with sodium chloride between the poles of an electromagnet, which gave a field strength of 10000 oersted. It was a good idea of Zeeman that he did not put down the negative results of Faraday and others to the lacking of the effect of the magnetic field, but to the smallness of the effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    In this article, the vector model has been used throughout. For the quantum mechanical treatment, cf. H. A. Bethe and E. E. Salpeter, Vol. XXXV of this Encyclopedia, pp. 291 to 314. See also P. Kusch and V. W. Hughes in Vol. XXXVII for the atomic beam method.Google Scholar
  2. 2.
    P. Zeeman: Proc. Roy. Acad. Amst. 5, 181, 242 (1896).Google Scholar
  3. 3.
    M. Faraday: Experimental Researches, 19th series.Google Scholar
  4. 4.
    J. Cl. Maxwell: Collected Works 2, 790.Google Scholar
  5. 1.
    See footnote 2, p. 296.Google Scholar
  6. 2.
    H. A. Lorentz: La théorie électromagnitique de Maxwell. Leiden 1892.Google Scholar
  7. 2a.
    H. A. Lorentz: Versuch einer Theorie der eletrischen und optischen Erscheinungen in bewegten Körpern. Leiden 1895.Google Scholar
  8. 3.
    Th. Preston: Phil. Mag. 45, 325 (1895).Google Scholar
  9. 3a.
    Th. Preston: Nature, Lond. 59, 224 (1899).ADSCrossRefGoogle Scholar
  10. 4.
    C. Runge, and F. Paschen: Phys. Z. 1, 180 (1900)Google Scholar
  11. 4a.
    C. Runge, and F. Paschen: Phys. Z. 8, 232 (1907).Google Scholar
  12. 4a.
    C. Runge, and F. Paschen: Astrophys. J. 15, 235 (1902)ADSCrossRefGoogle Scholar
  13. 4b.
    C. Runge, and F. Paschen: Astrophys. J. 16, 118 (1902).ADSCrossRefGoogle Scholar
  14. 5.
    A. Lande: Z. Physik 5, 231 (1921)ADSCrossRefGoogle Scholar
  15. 5a.
    A. Lande: Z. Physik 15, 189 (1923).ADSCrossRefGoogle Scholar
  16. 6.
    G. E. Uhlenbeck and S. Goudsmit: Naturwiss. 13, 953 (1925).ADSCrossRefGoogle Scholar
  17. 6a.
    G. E. Uhlenbeck and S. Goudsmit: Nature, Lond. 107, 264 (1926).ADSCrossRefGoogle Scholar
  18. 7.
    Th. Preston: Nature, Lond. 59, 224 (1899)ADSCrossRefGoogle Scholar
  19. 7a.
    Th. Preston: Dublin Transact. 7, 7 (1899).Google Scholar
  20. 8.
    C. Runge: Phys. Z. 8, 232 (1907).Google Scholar
  21. 1.
    See footnote 8, p. 297.Google Scholar
  22. 2.
    See footnote 5, p. 297.Google Scholar
  23. 3.
    P. Debye: Göttinger Nachr., Juni 1916. Google Scholar
  24. 4.
    A. Sommerfeld: Phys. Z. 17, 491 (1916).Google Scholar
  25. 5.
    A. Rubinowicz: Phys. Z. 19, 441, 465 (1918).Google Scholar
  26. 6.
    N. Bohr: Kopenh. Acad. 1 and 2 (1918).Google Scholar
  27. 7.
    P. A. M. Dirac: Quantum mechanics, 1930.zbMATHGoogle Scholar
  28. 8.
    E. U. Condon and G. H. Shortley: The theory of atomic spectra. 1953.Google Scholar
  29. 9.
    P. Kapitza, P. G. Strelkov and E. Laurman: Proc. Roy. Soc. Lond., Ser. A 167, 1 (1938).ADSCrossRefGoogle Scholar
  30. 1.
    P. Jacquinot and T. Belling: C. R. Acad. Sci., Paris 201, 778 (1935).Google Scholar
  31. 2.
    J. C. van den Bosch: Thesis Amsterdam 1948.Google Scholar
  32. 3.
    E. Back: Handbuch der Experimentalphysik, Bd. 22, 1. Leipzig 1929.Google Scholar
  33. 4.
    G. R. Harrison and F. Bitter: Phys. Rev. 57, 15 (1940).ADSCrossRefGoogle Scholar
  34. 5.
    E. Back and A. Lande: Zeeman-Effekt und Multiplettstruktur. 1925.Google Scholar
  35. 6.
    H. J. van de Vliet: Thesis, Amsterdam 1939.Google Scholar
  36. 7.
    C. J. Bakker: Thesis, Amsterdam 1931.Google Scholar
  37. 8.
    Hansen and Jacobsen: Kopenh. Acad. 3, 11 (1921).Google Scholar
  38. 9.
    E. Back: Ann. d. Physik 76, 317 (1925).ADSCrossRefGoogle Scholar
  39. 1.
    See footnote 2, p. 296. † The unit wv/cm is introduced here for the wavenumber, as this is the number of waves per cm. This unit is also called the Kayser (K). Cf. the unit of frequency: cycles per second (c/s) which is also called Hertz (Hz).Google Scholar
  40. 1.
    F. Paschen and E. Back: Ann. der Phys. 39, 929 (1912).Google Scholar
  41. 2.
    F. Paschen and E. Back: Ann. der Phys. 40, 960 (1913).ADSCrossRefGoogle Scholar
  42. 3.
    See footnote 7, p. 297. .Google Scholar
  43. 4.
    P. Zeeman: Phys. Z. 14, 405 (1913).Google Scholar
  44. 1.
    J. Woltjer: Thesis, Amsterdam 1914.Google Scholar
  45. 2.
    S. Popow: Phys. Z. 15, 756 (1919).Google Scholar
  46. 3.
    N. A. Kent: Astrophys. J. 40, 343 (1914).CrossRefGoogle Scholar
  47. 4.
    O. Oldenburg: Ann. der Phys. 67, 253 (1922).ADSCrossRefGoogle Scholar
  48. 5.
    K. Fosterling and G. Hansen: Z. Physik 18, 26 (1923).ADSCrossRefGoogle Scholar
  49. 6.
    C. C. Kiess and G. H. Shortley: J. Res. Nat. Bur. Stand. 42, 183 (1949).Google Scholar
  50. 1.
    C. G. Darwin: Proc. Roy. Soc. Lond., Ser. A 115, 1 (1928).ADSGoogle Scholar
  51. 2.
    K. Darwin: Proc. Roy. Soc. Lond., Ser. A 118, 264 (1928).ADSzbMATHCrossRefGoogle Scholar
  52. 1.
    W. Pauli: Z. Physik 16, 155 (1923).ADSCrossRefGoogle Scholar
  53. 1.
    See footnote 1, p. 315.Google Scholar
  54. 1.
    J. C. van den Bosch: Unpublished material. See also Lunds Univ. Årsskr., Proc. Rydberg Cent. Conf. Atomic Spectr. 1955.Google Scholar
  55. 2.
    G. J. van den Berg, P. F. A. Klinkenberg and J. C. van den Bosch: Physica, 18, 221 (1952).ADSCrossRefGoogle Scholar
  56. 3.
    H. C. Burger and B. Dorgelo: Z. Physik 23, 258 (1924).ADSCrossRefGoogle Scholar
  57. 4.
    L. S. Ornstein and H. C. Burger: Z. Physik 28, 135 (1924)ADSCrossRefGoogle Scholar
  58. 4a.
    L. S. Ornstein and H. C. Burger: Z. Physik 29, 29 (1924).CrossRefGoogle Scholar
  59. 5.
    R. de L. Kronig and S. Goudsmit: Naturwiss. 13, 90 (1925).ADSGoogle Scholar
  60. 5a.
    R. de L. Kronig and S. Goudsmit: Z. Physik 31, 885 (1925).ADSCrossRefGoogle Scholar
  61. 6.
    H. Hönl: Z. Physik 31, 340 (1925).ADSCrossRefGoogle Scholar
  62. 7.
    A. Sommerfeld and W. Heisenberg: Z. Physik 11, 131 (1922).ADSCrossRefGoogle Scholar
  63. 8.
    J. H. van Vleck: Quantum Principles and Line Spectra. 1926.Google Scholar
  64. 9.
    See footnote 8, p. 298.Google Scholar
  65. 1.
    A. A. Michelson: Phil. Mag. 31, 338 (1891).Google Scholar
  66. 2.
    C. Fabry and A. Perot: Ann. de chim. et phys. 12, 459 (1897).zbMATHGoogle Scholar
  67. 3.
    O. Lummer and E. Gehrcke: Ann. der Phys. 10, 457 (1903).ADSzbMATHCrossRefGoogle Scholar
  68. 4.
    L. Janicki: Ann. der Phys. 29, 1833 (1909).Google Scholar
  69. 5.
    W. Pauli: Naturwiss. 12, 741 (1924).ADSCrossRefGoogle Scholar
  70. 6.
    W. F. Meggers and K. Burns: J. Opt. Soc. Amer. 14, 449 (1927).ADSCrossRefGoogle Scholar
  71. 7.
    S. Goudsmit and E. Back: Z. Physik 43, 321 (1927)ADSCrossRefGoogle Scholar
  72. 7a.
    S. Goudsmit and E. Back: Z. Physik 47, 174 (1928).ADSCrossRefGoogle Scholar
  73. 1.
    P. Zeeman, E. Back and S. Goudsmit: Z. Physik 66, 7 (1930).ADSCrossRefGoogle Scholar
  74. 2.
    D. Jackson and H. Kuhn: Proc. Roy. Soc. Lond., Ser. A 167, 205 (1938).ADSCrossRefGoogle Scholar
  75. 3.
    T. L. de Bruin and P. F. A. Klinkenberg: Proc. Roy. Acad. Amst. 43, 581 (1940).Google Scholar
  76. 4.
    G. R. Harrison: Rep. Progr. Phys. 8, 212 (1941).ADSCrossRefGoogle Scholar
  77. 5.
    G. Raoult: Ann. de Phys. 4, 369 (1949).Google Scholar
  78. 6.
    P. F. A. Klinkenberg: Physica, Haag 16, 185 (1950).ADSCrossRefGoogle Scholar
  79. 1.
    J. C. van den Bosch and P. F. A. Klinkenberg: Proc. Roy. Acad. Amst. 44, 556 (1941).Google Scholar
  80. 1.
    J. C. van den Bosch: Thesis Amsterdam 1948.Google Scholar
  81. 1a.
    C. C. Kiess, C.J. Humphreys and D. D. Laun: Bur. Stand. J. Res. 37, 57 (1946).Google Scholar
  82. 1b.
    Ph. Schuurmans: Physica, Haag 11, 419 (1946).ADSCrossRefGoogle Scholar
  83. 1c.
    Ph. Schuurmans: Thesis Amsterdam 1946.Google Scholar
  84. 1d.
    Ph. Schuurmans, J. C. van den Bosch and N. Dijkwel: Physica, Haag 13, 117 (1947).ADSCrossRefGoogle Scholar
  85. 2.
    See footnote 2, p. 299.Google Scholar
  86. 3.
    A. G. Shenstone and H. A. Blair: Phil. Mag. 8, 765 (1929).Google Scholar
  87. 4.
    See footnote 6, p. 317.Google Scholar
  88. 5.
    M. A. Catalan and F. Poggio: Pieter Zeeman Jubilee Vol. p. 387. Nijhoff 1935.Google Scholar
  89. 6.
    See footnote 6, p. 299.Google Scholar
  90. 1.
    See footnote 1, p. 317.Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1957

Authors and Affiliations

There are no affiliations available

Personalised recommendations