Skip to main content

Part of the book series: NMR ((NMR,volume 26))

Abstract

The growing interest in the application of NMR spectroscopy to intact biological systems has placed unique demands on instrumentation. Perhaps the most critical piece of instrumentation for the in-vivo spectroscopist is the NMR probe. The need to perform quick and reliable experiments, particularly in the clinical setting, makes probe sensitivity critical. Many studies involve the use of more than one nucleus. Typically, proton NMR is used to shim, obtain localizing images and/or spectra. Additional spectra may be acquired from 31P, 23Na, 13C or other nuclei. This multinuclear approach to in-vivo NMR spectroscopy has placed a premium on multiple tuned NMR probes that perform with high sensitivity. There are many designs for double tuned probes in the NMR literature. Some designs for probes tuned to three and four nuclei have also been presented. All of these designs must sacrifice some sensitivity at one or more of the resonant frequencies at which they operate when compared to a similar single tuned coil. One common strategy of all of the multiple tuned probe designs is to minimize the loss in sensitivity. In most designs it is possible to arbitrarily distribute the loss in sensitivity between the different operating frequencies of the probe by proper choice of component values. Thus the evaluation of any multiple tuned probe can only be performed if the probe is optimized for a particular application. A second, less frequently discussed aspect of multiple tuned NMR probes is orthogonal tuning adjustment. In the in vivo setting it is very difficult to control loading of the probe. Therefore, the tuning must be adjusted with each application. Independent tuning of the individual resonances is important to ensure reliable performance by the probe. In this paper, I will discuss in detail many of the multiple tuned designs that have appeared in the NMR literature, paying particular attention to the advantages and disadvantages of each. I will focus on multiple tuned surface coils, but will also treat double tuned volume coils, which are of importance in the context of volume selective MRS techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

magnetic vector potential

B:

magnetic field intensity (scalor)

B:

magnetic field vector

C:

capacitance

E:

Efficiency emf electramotive force

F:

effective filling factor

1:

current

i:

(− 1)½

K:

coupling constant

k:

Boltzman constant

L:

inductance

M:

magnetization vector

M:

magnitude of magnetization vector

M :

mutual inductance

Q:

quality factor (Lω/r)

r:

resistance (ohms)

T:

temperature (kelvin)

X:

reactance (ohms)

Z:

impedance (ohms)

β:

B/I

Δ∫:

frequency range

ω:

frequency

References

  1. Hoult D, Richards RE (1976) J Magn Reson 24: 71.

    Article  Google Scholar 

  2. Hoult DI (1976) Progress in NMR Spectroscopy 12: 41.

    Article  Google Scholar 

  3. Bottomly PA, Andrew RA (1976) Phys Med Biol 23: 630.

    Article  Google Scholar 

  4. Murphy-Boesch J, Koretzky AP (1983) J Magn Reson 54: 26.

    Google Scholar 

  5. Decorps M (1985) J Magn Reson 65: 100.

    Article  CAS  Google Scholar 

  6. Misc G (1987) Radiology 165: 344.

    Google Scholar 

  7. Hoult DI, Chen CN (1988) In: Proc. seventh annual meeting Soc Magn Reson Med, 20–26 Aug. San Fransico.

    Google Scholar 

  8. Froncisz W, Jesmanowicz A, Hyde JS (1956) J Magn Reson 66: 135.

    Google Scholar 

  9. Kuhns PL, Lizak MJ, Lee S, Conradi MS (1988) J Magn Reson 78: 69.

    Article  Google Scholar 

  10. Schnall MD, Barlow C, Subramanian VH, Leigh JS (1986) J Magn Reson 68: 161.

    Article  CAS  Google Scholar 

  11. Schnall MD, Subramanian VH, Leigh JS, Chance B (1985) J Magn Reson 65: 122.

    Article  CAS  Google Scholar 

  12. Chew WM, Taveres N, Auffermann W, Higgans CB (1988) Mag Res Med 7: 321.

    Google Scholar 

  13. Rajan SS, Wehrle JP, Glickson JD (1987) J Magn Reson 74: 147.

    Article  CAS  Google Scholar 

  14. Edelstein WA, Hardy CJ, Meuller OM (1986) J Magn Reson 67: 156.

    Article  CAS  Google Scholar 

  15. Bendall MR (1988) J Magn Reson 8: 380.

    Article  CAS  Google Scholar 

  16. Prammer MG, Vogele KE, Leigh JS (1989) In: Proc. eighth annual meeting Soc Magn Reson Med, 12–18 Aug. Amsterdam, The Netherlands.

    Google Scholar 

  17. Purington ES (1930) Proc I.R.E. 18: 983.

    Article  Google Scholar 

  18. Aiken CB (1937) Proc I.R.E. 25: 230.

    Article  Google Scholar 

  19. Schnall MD, Subramanian VH, Leigh JS (1986) J Magn Reson 67: 129.

    Article  Google Scholar 

  20. Terman FE (1943) Radio Engineer’s Handbook, 1st edn, McGraw Hill, New York p 151.

    Google Scholar 

  21. Fitzimmons JR, Brooker HR, Beck B (1987) Magn Reson Med 5: 471.

    Article  Google Scholar 

  22. Grist TM, Kneeland JB, Jesmanowicz A, Francisz W, Hyde JS (1988) Mag Res Med 6: 253.

    Article  CAS  Google Scholar 

  23. Eleff SE, Schnall MD, Ligetti L, Osbakken M, Subramanian VH, Chance B, Leigh JS (1988) Mag Res Med 7: 412.

    Article  CAS  Google Scholar 

  24. Styles P, Soffe NF, Scott CA, Cragg DA, Row F, White DJ, White PCJ (1984) J Magn Reson 60: 397.

    Article  CAS  Google Scholar 

  25. Damico LA, Summers JJ, Schnall MD (1987) In: Proc. sixth annual meeting Soc Magn Reson Med, 17–21 Aug. New York.

    Google Scholar 

  26. Boesch C, Martin E (1988) Radiology 168: 481.

    CAS  Google Scholar 

  27. Cross TA, Mueller S, Aue WP (1985) J Magn Reson 62: 87.

    Article  CAS  Google Scholar 

  28. Bolinger L, Prammer M, Leigh JS (1989) J Magn Reson 81: 162.

    Article  Google Scholar 

  29. Hayes CE, Edelstein WA, Schenk JF, Mueller OM, Eash M (1985) J Magn Reson 63: 662.

    Google Scholar 

  30. Mascart E, Joubert J (1886) Lecons sur l’electricite et le magnetisme 1: 357.

    Google Scholar 

  31. Rath A (1989) In: Proc. eigths annual meeting Soc Magn Reson Med, 12–18 Aug. Amsterdam, The Netherlands.

    Google Scholar 

  32. Isac G, Schnall MD, Lenkinski RL, Vogele K (1990) J Magn Reson 89: 41.

    Article  Google Scholar 

  33. Fitzimmons JR, Beck B (1990) In: Proc. ninth annual meeting Soc Magn Reson Med, 18–24 Aug. New York.

    Google Scholar 

  34. Joseph PM, Lu D (1989) IEEE Trans Med Imaging 8: 286.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag, Berlin Heidelberg

About this chapter

Cite this chapter

Schnall, M. (1992). Probes Tuned to Multiple Frequencies for In-Vivo NMR. In: Rudin, M. (eds) In-Vivo Magnetic Resonance Spectroscopy I: Probeheads and Radiofrequency Pulses Spectrum Analysis. NMR, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45697-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45697-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45699-2

  • Online ISBN: 978-3-642-45697-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics