Skip to main content

Biochemical and Autoradiographic Approaches to the Characterization of Adenosine Receptors in Brain

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

The distribution and biochemical properties of adenosine receptors have been studied using radioligand-binding techniques. Using autoradiographic methods, the distributions of A1 and A2 receptors were found to be quite different. Whereas the A1 receptors are mostly concentrated in the hippocampus and cerebellum of rat brain, the A2 receptors are found mainly in the striatum, nucleus accumbens, and olfactory tubercle. The binding of ligands to A1 receptors is modified by several factors, including guanine nucleotides, sodium ions, adenine nucleotides, and Mg2+. Analysis of the actions of adenine nucleotides and Mg2+ indicates that these act at sites other than the guanine nucleotide regulatory site. These observations, together with structural studies using solubilized receptor or radiation inactivation, indicate the multimolecular nature of the A1 adenosine-receptor complex.

Financial support from the Deutsche Forschungsgemeinschaft [West German Science Foundation] is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: binding of N6-cyclohexy[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci USA 77:5547–5551

    Article  PubMed  CAS  Google Scholar 

  2. Bruns RF, Lawson-Wendling H, Pugsley TA (1983) A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem 132:74–81

    Article  PubMed  CAS  Google Scholar 

  3. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  4. Choca JI, Kwatra MM, Hosey MM, Green RD (1985) Specific photoaffmity labelling of inhibitory adenosine receptors. Biochem Biophys Res Commun 131:115–121

    Article  PubMed  CAS  Google Scholar 

  5. Collins GGS, Anson J (1985) Adenosine Al receptors mediate the inhibitory effects of exogenous adenosine in the rat olfactory cortex slice. Neuropharmacology 24:1077–1084

    Article  PubMed  CAS  Google Scholar 

  6. Cooper DMF, Yeung SMH, Perez-Reyes E, Owens JR, Fossom LH, Gill DL (1985) Properties required of a functional Ni, the GTP regulatory complex that mediates the inhibitory actions of neurotransmitters on adenylate cyclase. Raven, New York, pp 75–86 (Advances in cyclic nucleotide and protein phosphorylation research, vol 19)

    Google Scholar 

  7. Dunwiddie T, Fredholm B (1984) Adenosine receptors mediating inhibitory electrophysio-logical responses in rat hippocampus differ from receptors mediating cyclic AMP accumulation. Naunyn Schiedebergs Arch Pharmacol 326:294–301

    Article  CAS  Google Scholar 

  8. Erfurth A, Reddington M (1986) Properties of binding sites for [3H]cyclohexyladenosine in the hippocampus and other regions of rat brain: a quantitative autoradiographic study. Neurosci Lett 64:116–120

    Article  PubMed  CAS  Google Scholar 

  9. Frame LT, Yeung S-M, Venter JC, Cooper DMF (1986) Target size of the adenosine Ri receptor. Biochem J 235:621–624

    PubMed  CAS  Google Scholar 

  10. Gavish M, Goodman RR, Snyder SH (1982) Solubilized adenosine receptors in the brain: regulation by guanine nucleotides. Science 215:1633–1635

    Article  PubMed  CAS  Google Scholar 

  11. Goodman RR, Snyder SH (1982) Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci 2:1230–1241

    PubMed  CAS  Google Scholar 

  12. Goodman RR, Cooper MJ, Gavish M, Snyder SH (1982) Guanine nucleotide and cation regulation of the binding of [3H]cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine Al receptors in brain membranes. Mol Pharmacol 21:329–335

    PubMed  CAS  Google Scholar 

  13. Green RD (1984) Reciprocal modulation of agonist and antagonist binding to inhibitory adenosine receptors by 5′-guanylylimidophosphate and monovalent cations. J Neurosci 4:2472–2476

    PubMed  CAS  Google Scholar 

  14. Kempner ES, Schlegel W (1979) Size determination of enzymes by radiation inactivation. Anal Biochem 92:2–10

    Article  PubMed  CAS  Google Scholar 

  15. Klotz KN, Cristalli G, Grifantini M, Vittori S, Lohse MJ (1985) Photoaffinity labeling of Aladenosine receptors. J Biol Chem 260:14659–14664

    PubMed  CAS  Google Scholar 

  16. Klotz KN, Lohse M, Schwabe U (1986) Characterization of the solubilized A1 adenosine receptor from rat brain membranes. J Neurochem 46:1528–1534

    Article  PubMed  CAS  Google Scholar 

  17. Lee KS, Reddington M (1986a) Autoradiographic evidence for multiple CNS binding sites for adenosine derivatives. Neuroscience 19:535–549

    Article  PubMed  CAS  Google Scholar 

  18. Lee KS, Reddington M (1986b) 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) inhibition of [3H]NECA binding allows the visualization of putative non-Al adenosine receptors. Brain Res 368:394–398

    Article  PubMed  CAS  Google Scholar 

  19. Lee KS, Reddington M, Schubert P, Kreutzberg G (1983a) Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the densite of adenosine receptors. Brain Res 260:156–159

    Article  PubMed  CAS  Google Scholar 

  20. Lee KS, Schubert P, Reddington M, Kreutzberg GW (1983b) Adenosine receptor density and the depression of evoked neuronal activity in the rat hippocampus in vitro. Neurosci Lett 37:81–85

    Article  PubMed  CAS  Google Scholar 

  21. Lewis ME, Patel J, Edley SM, Marangos PJ (1981) Autoradiographic visualization of rat brain adenosine receptors using N6-cyclohexyl[3H]adenosine. Eur J Pharmacol 73:109–110

    Article  PubMed  CAS  Google Scholar 

  22. Linden J (1984) Purification and characterization of (−)[125]hydroxyphenylisopropyladeno-sine, an adenosine R-site agonist radioligand and theoretical analysis of mixed stereoisomer radioligand binding. Mol Pharmacol 26:414–423

    PubMed  CAS  Google Scholar 

  23. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  24. Martini C, Pennacchi E, Poli MG, Lucacchini A (1985) Solubilization of adenosine Al binding sites from sheep cortex. Neurochem Int 7:1017–1020

    Article  PubMed  CAS  Google Scholar 

  25. Munshi R, Hansske F, Baer HP (1985) [125I]N6-(3-Iodo-4-hydroxyphenyl) isopropyladeno-sine: the use of the diastereomers as ligands for adenosine receptors in rat brain. Eur J Pharmacol 111:107–115

    Article  PubMed  CAS  Google Scholar 

  26. Nakata H, Fujisawa H (1983) Solubilization and partial characterization of adenosine binding sites from rat brainstem. FEBS Lett 158:93–97

    Article  PubMed  CAS  Google Scholar 

  27. Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:187–239

    Article  PubMed  CAS  Google Scholar 

  28. Reddington M (1985) Properties of binding sites for adenosine receptor ligands in rat brain. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL Press, Oxford, pp 181–188

    Google Scholar 

  29. Reddington M, Lee KS, Schubert P (1982) An Al receptor, characterised by [3H]cyclohex-yladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation. Neursci Lett 28:275–279

    Article  CAS  Google Scholar 

  30. Reddington M, Lee KS, Schubert P, Kreutzberg GW (1983) Biochemical and physiological characterization of adenosine receptors in rat brain. CNS receptors — from molecular pharmacology to behavior P Mandel FV DeFeudis; Raven, New York, pp 465–476

    Google Scholar 

  31. Reddington M, Erfurth A, Lee KS (1986) Heterogeneity of binding sites for N-ethylcarbox-amido[3H]adenosine in rat brain: effects of N-ethylmaleimide. Brain Res 399:232–239

    Article  PubMed  CAS  Google Scholar 

  32. Schwabe U, Trost T (1980) Characterization of adenosine receptors in rat brain by (−)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol 313:179–187

    Article  PubMed  CAS  Google Scholar 

  33. Schwabe U, Lenschow V, Ukena D, Ferry DR, Glossman H (1982) [125I]-N6-p-hydroxyphe-nylisopropyladenosine, a new ligand for Ri adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 321:84–87

    Article  PubMed  CAS  Google Scholar 

  34. Stiles GL (1985) The Al adenosine receptor. Solubilisation and characterization of a guanine nucleotide-sensitive form of the receptor. J Biol Chem 260:6728–6732

    PubMed  CAS  Google Scholar 

  35. Stiles GL, Daly DT, Olsson RA (1985) The Al adenosine receptor: identification of the binding subunit by photoaffinity cross-linking. J Biol Chem 260:10806–10811

    PubMed  CAS  Google Scholar 

  36. Van Calker D, Mueller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  37. Williams M, Risley EA (1980) Biochemical characterization of putative central purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine. Proc Natl Acad Sci USA 77:6892–6896

    Article  PubMed  CAS  Google Scholar 

  38. Williams M, Braunwalder A, Erickson TJ (1986) Evaluation of the binding of the A1 selective adenosine radioligand, cyclopentyladenosine (CPA), to rat tissue. Naunyn Schmiedebergs Arch Pharmacol 332:179–183

    Article  PubMed  CAS  Google Scholar 

  39. Wu P, Phillis JW, Balls K, Rinaldi B (1980) Specific binding of 2-[3H]chloroadenosine to rat brain cortical membranes. Can J Physiol Pharmacol 58:576–579

    Article  PubMed  CAS  Google Scholar 

  40. Yeung SH, Green RD (1983) Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5′-guanylylimidophosphate or N-ethylmaleimide. J Biol Chem 258:2334–2339

    PubMed  CAS  Google Scholar 

  41. Yeung SH, Green RD (1984) [3H]5′-N-ethylcarboxamide adenosine binds to both Ra and Ri adenosine receptors in rat striatum. Naunyn Schmiedebergs Arch Pharmacol 325:218–225

    Article  PubMed  CAS  Google Scholar 

  42. Yeung SH, Fossom LH, Gill DL, Cooper DMF (1985) Magnesium exerts a central role in the regulation of inhibitory adenosine receptors. Biochem J 229:91–100

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reddington, M., Alexander, S.P., Erfurth, A., Lee, K.S., Kreutzberg, G.W. (1987). Biochemical and Autoradiographic Approaches to the Characterization of Adenosine Receptors in Brain. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics