Skip to main content

Adenosine Receptors at the Coronary Endothelium: Functional Implications

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Cultured coronary endothelial cells (CEC) are characterized by an active metabolism of adenosine (AR) and adenine nucleotides (AN). Extracellularly applied AN (AMP, ADP or, ATP) are rapidly dephosphorylated by a cascade of nucleotidases at the cell surface. AR, formed by these processes or directly added into the incubation medium, is avidly taken up: small amounts are preferentially phosphorylated, larger amounts are degraded mainly to uric acid. With a specially developed dual-chamber perfusion system the ability of AR and AN to penetrate across confluent endothelial layers was determined. Regardless whether these vasoactive compounds were applied at the apical or basal side of the cell layer, at concentrations <10−6 M only vasoinactive degradatives were detected at the contralateral side.

These in vitro findings can be extended to the in situ coronary endothelium. For example, autoradiographic studies on isolated perfused guinea pig hearts directly demonstrated that this tissue functions as a metabolic barrier which prevents passage of AR from the intravascular to the interstitial space.

Intra-arterially applied AMP, ADP, ATP, or high molecular weight polyadenylic acid, though confined to the intracoronary space, induce coronary flow increases just as promptly as AR. Thus, the smooth muscle relaxing effects of all these vasoactive compounds must be elicited by an endothelium-mediated process involving surface receptors.

AR, NECA, and R-PIA stimulate the formation of cyclic AMP in CEC, a slow process protracted over 15 min. The adenosine agonist effects on endothelial adenylate cyclase (AC) could be blocked by various alkylxanthines. Adenine nucleotides did not influence AC activity. On the other hand, AR as well as its nucleotide derivatives induced a rapid activation of phospholipase C within 15 s.

Obviously two different types of adenosine receptors are present at the surface of CEC:

  1. a)

    Adenosine receptors of type A2, which stimulate endothelial AC in the same way as β-adrenergic compounds;

  2. b)

    purinoceptors of a mixed type (designated P1+2), which are activated by AR and its nucleotide derivatives. This receptor uses phospholipase C as a promptly responding signalling system. In contrast to the A2 receptor, which perhaps participates in the regulation of capillary permeability, the endothelial P1+2 receptor may be involved in the regulation of coronary flow.

According to our results, the microvascular coronary endothelium is not only a morphologie but also metabolic barrier between the interstitial and the intravascular space. The individual cells of this tissue are able to respond to chemical signals via receptors at their luminal and very probably also abluminal surface. Endothelial cells of capillaries and arterioles possibly communicate with each other and via myoendothelial junctions also with the smooth muscle cells of the resistance vessels. This concept could open up new aspects of the metabolic regulation of coronary flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anversa P, Levicky V, Berghi C, McDonald SL, Kikkawa Y (1983) Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ Res 52:57–64

    PubMed  CAS  Google Scholar 

  2. Baer HP, Drummond GI (1969) Catabolism of adenine nucleotides by the isolated perfused rat heart. Proc Soc Exp Biol Med 127:33–36

    Google Scholar 

  3. Bennett AS, Luft JH, Hampton JC (1959) Morphological classification of vertebrate blood capillaries. Am J Physiol 196:381–390

    PubMed  CAS  Google Scholar 

  4. Böck M, Möller A, Nees S, Gerlach E (1984) Extracellular degradation of adenine nucleotides (AN) by coronary endothelial cells (CEC) and vascular endothelium of other origin. Pflügers Arch 402: Suppl R20 (Abstract)

    Google Scholar 

  5. Bundgaard M, Hagman P, Crone G (1983) The three-dimensional organization of plas-malemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res 25:358–368

    Article  PubMed  CAS  Google Scholar 

  6. Bünger R, Haddy FJ, Gerlach E (1975) Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflügers Arch 358:213–224

    Article  PubMed  Google Scholar 

  7. Burnstock G, Kennedy C (1986) A dual function for adenosine 5′-triphosphate in the regulation of vascular tone. Circ Res 58:319–330

    PubMed  CAS  Google Scholar 

  8. Chamber R, Zweifach BN (1947) Intercellular cement and capillary permeability. Physiol Rev 27:436–463

    Google Scholar 

  9. Dahl E (1973) The fine structure of intracerebral vessels. Z Zeilforsch 145:577–586

    Article  CAS  Google Scholar 

  10. Des Rosiers C, Nees S (1986) Coronary endothelial cells possess adenosine receptors of type A2. Naunyn Schmiedebergs Arch. Pharmacol., submitted

    Google Scholar 

  11. Drenckhahn D, Gröschel-Stewart U, Kendrick-Jones J, Scholey JM (1983) Antibody to thymus myosin: its immunological characterization and use for immunocytochemical localization of myosin in vertebrate nonmuscle cells. Eur J Cell Biol 30:100–111

    PubMed  CAS  Google Scholar 

  12. Freissmuth M, Hausleithner V, Nees S, Böck M, Schütz W (1986) Cardiac ventricular β 2-adrenoceptors in guinea pigs and rats are localized on the coronary endothelium. Naunyn Schmiedebergs Arch Pharmacol 334:56–62

    Article  PubMed  CAS  Google Scholar 

  13. Fr∅kjaer-Jensen J (1984) The plasmalemmal vesicular system in striated muscle capillaries and in pericytes. Tissue Cell 16:31–42

    Article  Google Scholar 

  14. Fr∅kjaer-Jensen J (1985) The continuous capillary: structure and function. In: Six papers in the biological sciences, being part two of sixteen research reports by the Niels Bohr Fellows of the Royal Danish Academy of Sciences and Letters, pp 209-253. Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 25, Copenhagen, October 7, 1985

    Google Scholar 

  15. Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53:557–573

    PubMed  CAS  Google Scholar 

  16. Furchgott RF (1984) The role of endothelium in the responses of vascular smooth muscle to drugs. Ann Rev Pharmacol Toxicol 24:175–197

    Article  CAS  Google Scholar 

  17. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  18. Gerlach E, Nees S, Becker BF (1985) The vascular endothelium: a survey of some newly evolving biochemical and physiological features. Basic Res Cardiol 80:459–474

    Article  PubMed  CAS  Google Scholar 

  19. Hammersen F, Hammersen E (1984) Some structural aspects of precapillary vessels. J Cardiovasc Pharmacol 6:289–303

    Article  Google Scholar 

  20. Hartman BK, Swanson LW, Raichle ME, Preskorn SH, Clark HB (1980) Central adrenergic regulation of cerebral microvascular permeability and blood flow; anatomic and physiologic evicence. In: Eisenberg HN, Suddith RL (eds) Cerebral microvasculature. Plenum, New York, pp 113–135

    Google Scholar 

  21. Hellewell PG, Pearson JD (1984) Purinoceptor mediated stimulation of prostacyclin release in the porcine pulmonary vasculature. Br J Pharmacol 83:457–462

    PubMed  CAS  Google Scholar 

  22. Jarasch ED, Grund C, Bruder G, Heid HN, Keenan TN, Franke WW (1981) Localization of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 25:67–82

    Article  PubMed  CAS  Google Scholar 

  23. Larsen DM, Kam EY, Sheridan JD (1983) Junctional transfer in cultured vascular endothelium: I. Electrical coupling. J Membrane Biol 74:103–113

    Article  Google Scholar 

  24. Majerus PN, Wilson DB, Connolly TM, Bross TE, Neufeld EJ (1985) Phosphoinositide turnover provides a link in stimulus-response coupling. TIBS 10:168–171

    CAS  Google Scholar 

  25. Metz J, Weihe E (1980) Intercellular junctions in the full term human placenta. II Cytotro-phoblast cells, intravillous stroma cells and blood vessels. Anat Embryol (Berl) 158:167–178

    Article  PubMed  CAS  Google Scholar 

  26. Nees S, Gerlach E (1982) Adenine nucleotide and adenosine metabolism in cultured coronary endothelial cells: formation and release of adenine compounds and possible functional implications. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Nijhoff, Boston, pp 347–360

    Google Scholar 

  27. Nees S, Böck M, Herzog V, Becker BF, Des Rosiers C, Gerlach E (1985) The adenine nucleotide metabolism of the coronary endothelium: implications for the regulation of coronary flow by adenosine. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL, Oxford, pp 419–436

    Google Scholar 

  28. Nees S, Herzog V, Becker BF, Böck M, Des Rosiers C, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529

    Article  PubMed  CAS  Google Scholar 

  29. Olsson R, Davis CJ, Khouri EM, Patterson RE (1976) Evidence for an adenosine receptor on the surface of dog coronary myocytes. Circ Res 39:93–98

    PubMed  CAS  Google Scholar 

  30. Palade GE, Bruns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37:633–653

    Article  PubMed  CAS  Google Scholar 

  31. Pearson JD, Gordon JL (1985) Nucleotide metabolism by endothelium. Annu Rev Physiol 47:617–627

    Article  PubMed  CAS  Google Scholar 

  32. Rasmussen H (1986) The calcium messenger system, Parts I and II. N Engl J Med 314:1094–1101 and 1164-1170, respectively

    Article  PubMed  CAS  Google Scholar 

  33. Rhodin JAG (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18:181–223

    Article  PubMed  CAS  Google Scholar 

  34. Rivers RJ, Sleek GE, Duling BR (1986) Is there segmental variation of endothelial cell attachment to the internal elastic lamina? Fed Proc 45:1158

    Google Scholar 

  35. Rubio R, Wiedmeier T, Berne RM (1972) Nucleoside phosphorylase: localization and role in the myocardial distribution of purines. Am J Physiol 222:550–555

    PubMed  CAS  Google Scholar 

  36. Schmidt K, Kukovetz WR (1986) Stimulation of adenylate cyclase by adenosine in cultured bovine aortic endothelial cells. Pflügers Arch 407 Suppl 1:S39 (Abstract)

    Google Scholar 

  37. Schrader J, Gerlach E (1976) Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Arch 367:129–135

    Article  PubMed  CAS  Google Scholar 

  38. Schrader J, Haddy FJ, Gerlach E (1977) Release of adenosine, inosine, and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hypere-mia. Pflügers Arch 369:1–6

    Article  PubMed  CAS  Google Scholar 

  39. Schrader J, Nees S, Gerlach E (1977) Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells. Pflügers Arch 369:251–257

    Article  PubMed  CAS  Google Scholar 

  40. Schütz W, Freissmuth M, Hausleithner V, Böck M, Nees S (1986) Cardiac ventricular β 2-adrenoceptors in guinea pigs and rats are localized on the coronary endothelium. Proceedings of the Herbsttagung der Deutschen Pharmakologischen Gesellschaft und Schweizerischen Gesellschaft für Pharmakologie und Toxikologie, Mannheim, 22-25 September, 1986

    Google Scholar 

  41. Simionescu M, Simionescu N (1984) Ultrastructure of the microvascular wall: functional correlations. In: Handbook of Physiology, Section 2: The Cardiovascular System, Vol IV. American Physiological Society, pp 41–101

    Google Scholar 

  42. Simionescu N, Simionescu M, Palade GE (1975) Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607

    Article  PubMed  CAS  Google Scholar 

  43. Sollevi A, Fredholm BB (1981) Role of adenosine in adipose tissue circulation. Acta Physiol Scand 112:293–298

    Article  PubMed  CAS  Google Scholar 

  44. Spagnoli LG, Villaschi S, Neri L, Palmieri G (1982) Gap junctions in moendothehal bridges of rabbit carotid arteries. Experientia 38:124–125

    Article  PubMed  CAS  Google Scholar 

  45. Takai Y, Kishimoto A, Iwasa Y (1979) Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem 254:3692–3695

    PubMed  CAS  Google Scholar 

  46. Virchow R (1871) Die Cellularpathologie (4th edition). Hirschwald, Berlin

    Google Scholar 

  47. Winn HR, Rubio GR, Berne RM (1981) The role of adenosine in the regulation of cerebral blood flow. J Cereb Blood Flow Metab 1:239–244

    Article  PubMed  CAS  Google Scholar 

  48. Ying-Ou L, Fredholm BB (1985) Adenosine analogues stimulate cyclic AMP formation in rabbit cerebral microvessels via adenosine A2-receptors. Acta Physiol Scand 124:253–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nees, S., Des Rosiers, C., Böck, M. (1987). Adenosine Receptors at the Coronary Endothelium: Functional Implications. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics