Skip to main content

Analogues of Adenosine, Theophylline, and Caffeine: Selective Interactions with A1 and A2 Adenosine Receptors

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Adenosine modulates a variety of physiological functions through interaction with A1 and A2 adenosine receptors, where agonists can mediate inhibition and stimulation, respectively, of adenylate cyclase. Adenosine analogues, in particular the N6-substituted compounds, are more potent at A1 receptors than at A2 receptors. The subregion of the adenosine receptor that interacts with the N6-substituent is different for A1 and A2 receptors, particularly with respect to phenyl interactions, bulk tolerance, and stereoselectivity. A series of para-substituted N6-phenyladenosines have been synthesized, on the basis of a “functionalized congener” approach in which a chemically reactive group, such as an amine or carboxylic acid, is introduced at the terminus of a chain. From the functionalized congener are synthesized a variety of conjugates, each containing a common pharmacophore. Certain of the adenosine conjugates are highly selective for A1 receptors. Xanthines are classic antagonists for adenosine receptors, and many of their pharmacological actions may be due to blockade of adenosine receptors. Caffeine and theophylline are virtually nonselective for A1 and A2 receptors. Replacement of the methyl groups of theophylline with n-propyl or larger alkyl groups yields xanthines with selectivity for A1 receptors, particularly when combined with an 8-phenyl moiety. Most 1,3-dialky1-8-phenyl-xanthines are highly water-insoluble, but incorporation of polar aryl substituents, such as parasulfo or para-carboxy, to increase solubility results in a marked reduction in potency and selectivity. A new series of more hydrophilic 1,3-dipropy1-8-phenylxanthines has been synthesized using the functionalized congener approach. Certain conjugates of 8-[4-(carboxymethyloxy)phenyl]-1,3-dipropylxanthine display A1 selectivity in biochemical and cardiovascular models and in radioactive form provide an antagonist ligand for both A1 and A2 receptors. Certain analogues of caffeine in which the methyl group at the 1- or 7-position is replaced with a propargyl or propyl group display selectivity for A2 receptors. The profile of a series of adenosine analogues or of xanthine antagonists can be used to define the class of adenosine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruns RF (1980) Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can J Physiol Pharmacol 58:673–691

    Article  PubMed  CAS  Google Scholar 

  2. Bruns RF, Daly JW, Snyder SH (1983) Adenosine receptor binding: structure-activity analysis generates extremely potent xanthine antagonists. Proc Natl Acad Sci USA 80:2077–2080

    Article  PubMed  CAS  Google Scholar 

  3. Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: Binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci USA 72:5547–5551

    Article  Google Scholar 

  4. Collis MG (1984) Are there two types of adenosine receptors in peripheral tissues? In: Stone TW (ed) Purines: pharmacology and physiological roles. MacMillan, London, pp 75–84

    Google Scholar 

  5. Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25:197–207

    Article  PubMed  CAS  Google Scholar 

  6. Daly JW (1985) Adenosine receptors: structure activity relationships. In: Stefanovich V, Rudolphi K, Schubert P (eds) Receptors and modulation of cell function. IRL Press, Oxford, pp 31–46

    Google Scholar 

  7. Daly JW, Padgett WL, Shamim MT, Butts-Lamb P, Waters J (1985) 1,3-Dialkyl-8-(p-sulfo-phenyl)xanthines: potent water-soluble antagonist for A1 and A2-adenosine receptors. J Med Chem 28:487–492

    Article  PubMed  CAS  Google Scholar 

  8. Daly JW, Padgett WL, Shamim MT (1986a) Analogs of caffeine and theophylline: Effect of structural alterations on affinity at adenosine receptors. J Med Chem 29:1305–1308

    Article  PubMed  CAS  Google Scholar 

  9. Daly JW, Padgett WL, Shamim MT (1986b) Analogs of 1,3-dipropyl-8-phenylxanthine: Enhancement of selectivity at A1-adenosine receptors by aryl substituents. J Med Chem 29:1520–1524

    Article  PubMed  CAS  Google Scholar 

  10. Daly JW, Padgett W, Thompson RD, Kusachi S, Bugni WJ, Olsson RA (1986c) Structure-activity relationships for N6-substituted adenosines at a brain A1-adenosine receptor with a comparison to an A2-adenosine receptor regulating coronary blood flow. Biochem Pharmacol 35:2467–2481

    Article  PubMed  CAS  Google Scholar 

  11. Fredholm BB, Jacobson KA, Jonzon B, Kirk KL, Li YO, Daly JW (1986) Evidence that a novel 8-phenyl-substituted xanthine derivative is a cardioselective adenosine receptor antagonist in vivo. J Cardiovasc Pharmacol in press

    Google Scholar 

  12. Heller LJ, Olsson RA (1985) Inhibition of rat ventricular automaticity by adenosine. Am J Physiol 248:H907–H913

    PubMed  CAS  Google Scholar 

  13. Jacobson KA, Kirk KL, Daly JW, Jonzon B, Li YO, Fredholm BB (1985) A novel 8-phenyl-substituted xanthine derivative is a selective antagonist at adenosine A1-receptors in vivo. Acta Physiol Scand 125:341–342

    Article  Google Scholar 

  14. Jacobson KA, Kirk KL, Padgett WL, Daly JW (1985a) Functionalized congeners of adenosine: preparation of analogues with high affinity for A1-adenosine receptors. J Med Chem 28:1341–1346

    Article  PubMed  CAS  Google Scholar 

  15. Jacobson KA, Kirk KL, Padgett WL, Daly JW (1985b) Functionalized congeners of 1,3-dialkylxanthines: preparation of analogues with high affinity for adenosine receptors. J Med Chem 28:1334–1340

    Article  PubMed  CAS  Google Scholar 

  16. Jacobson KA, Kirk KL, Padgett WL, Daly JD (1985c) Probing the adenosine receptors with adenosine and xanthine biotin conjugates. FEBS Lett 184:30–35

    Article  PubMed  CAS  Google Scholar 

  17. Jacobson KA, Kirk KL, Padgett WL, Daly JW (1986a) A functionalized congener approach to adenosine receptor antagonists: amino acid conjugates of 1,3-dipropylxanthine. Mol Pharmacol 29:126–133

    PubMed  CAS  Google Scholar 

  18. Jacobson KA, Marr-Leisy D, Rosenkranz RP, Verlander MS, Melmon KL, Goodman M#(1983) Conjugates of catecholamines: I. N-Alkyl functionalized carboxylic acid congeners and amides related to isoproterenol. J Med Chem 26:492–499

    Article  PubMed  CAS  Google Scholar 

  19. Jacobson KA, Ukena D, Kirk KL, Daly JW (1986b) A [3H]-xanthine congener of 1,3-dipro-pyl-8-phenylxanthine: An antagonist radioligand for adenosine receptors. Proc Natl Acad Sci USA 83:4089–4093

    Article  PubMed  CAS  Google Scholar 

  20. Jacobson KA, Yamada N, Kirk KL, Daly JW, Olsson RA (1986c) N6-Functionalized congeners of adenosine with high potency at A2-adenosine receptors: Potential ligands for affinity chromatography. Biochem Biophys Res Commun 136:1097–1102

    Article  PubMed  CAS  Google Scholar 

  21. Kusachi S, Thompson RD, Olsson RA (1983) Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory (Ra) receptors. J Pharmacol Exp Ther 277:316–321

    Google Scholar 

  22. Kusachi S, Thompson RD, Bugni WJ, Yamada N, Olsson RA (1985) Dog coronary artery adenosine receptor: Structure of the N6-alkyl subregion. J Med Chem 28:1636–1643

    Article  PubMed  CAS  Google Scholar 

  23. Kusachi S, Thompson RD, Yamada N, Daly DT, Olsson RA (1986) Dog coronary adenosine receptor: Structure of the N6-aryl subregion. J Med Chem 29:989–996

    Article  PubMed  CAS  Google Scholar 

  24. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  25. Londos C, Wolff J, Cooper DMF (1984) Adenosine receptors and adenylate cyclase interactions. In: Bern RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Nijhoff, The Hague, pp 17–32

    Google Scholar 

  26. Olsson RA, Kusachi S, Thompson RD, Ukena D, Padgett WL, Daly JW (1986) N6-Substituted N-alkyl adenosine-5′-uronamides: Bifunctional ligands having recognition groups for A1 and A2 adenosine receptors. J Med Chem 29:1683–1689

    Article  PubMed  CAS  Google Scholar 

  27. Rosenkranz RP, Hoffman BB, Jacobson KA, Verlander MS, Klevans L, O’Donnell M, Goodman M, Melmon KL (1983) Conjugates of catecholamines: II. In vitro and in vivo pharmacological activity of N-alkyl-functionalized carboxylic acid congeners and amides related to isoproterenol. Mol Pharmacol 24:429–435

    PubMed  CAS  Google Scholar 

  28. Van Calker D, Müller M, Hamprecht B (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 276:839–841

    Article  PubMed  Google Scholar 

  29. Ukena D, Daly JW, Kirk KL, Jacobson KA (1986a) Functionalized congeners of 1,3-dipropyl-8-phenylxanthine: Potent antagonists for adenosine receptors that modulate membrane adenylate cyclase in pheochromocytoma cells, platelets and fat cells. Life Sci 38:797–807

    Article  PubMed  CAS  Google Scholar 

  30. Ukena D, Jacobson KA, Kirk KL, Daly JW (1986b) A [3H]-amine congener of 1,3-dipropyl-8-phenylxanthine: A new radioligand for A2 adenosine receptors of human platelets. FEBS Lett 199:269–274

    Article  PubMed  CAS  Google Scholar 

  31. Ukena D, Olsson RA, Daly JW (1986c) Definition of subclasses of adenosine receptors associated with adenylate cyclase: Interaction of adenosine analogs with inhibitory A1 receptors and stimulatory A2 receptors. Canad J Physiol. Pharmacol in press

    Google Scholar 

  32. Ukena D, Shamin MJ, Padgett WL, Daly JW (1986d) Analogs of caffeine: Antagonists with selectivity for A2 adenosine receptors. Life Sci 39:743–750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daly, J.W., Ukena, D., Jacobson, K.A. (1987). Analogues of Adenosine, Theophylline, and Caffeine: Selective Interactions with A1 and A2 Adenosine Receptors. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics